Floodplain Development Permit

Doddridge County, WV Floodplain Management

This permit gives approval for the development/ project listed that impacts the FEMA-designated floodplain and/or floodway of Doddridge County, WV, pursuant to the rules and regulations established by all applicable Federal, State and local laws and ordinances, including the Doddridge County Floodplain Ordinance. This permit must be posted at the site of work as to be clearly visible, and must remain posted during entirety of development.

Permit: # 15-405

Warsh Himmen

Date Approved: 02/17/2016

Expires: 02/17/2017

Issued to: EQT Production Company

POC: Lacoa Corder 304-848-0076

WEU 51 Well Pad and Access Rd Enhancement

Company Address: 115 Professional Place/P.O. Box 280

Bridgeport, WV 26330

Project Address

Firm: 120C

Lat/Long:

Purpose of development: Well Pad, and Access Road Modification

Issued by: George C Eidel, Doddridge County FPM (or designee)

______ Date: 02/17/2016

Doddridge County, West Virginia

RECEIPT NO:

5936

DATE: 2015/11/24

FROM: SMITH LAND SURVEYING

AMOUNT: \$

500.00

FIVE HUNDRED DOLLARS AND 00 CENTS

FOR: #15-40 EQT PRODUCTION WEU 51 PROPOSED WELL

PAD & ACCESS ROAD ENHANCEMENT

00000018259 FP-BUILDING PERMITS

020-318

TOTAL:

\$500.00

MICHAEL HEADLEY

SHERIFF &TREASURER

MEC

CLERK

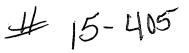
Customer Copy

P.O. BOX 150, GLENVILLE, WV 26351 (304) 462-5634 • FAX (304) 462-5656

LETTER OF TRANSMITTAL

JOB NO.

dge County Floo	dplain C								
-	dplain C				ATTENTION George Eidel				
		oorginator	EQ	T WEU 51 Re-Perm	it				
st Court St.									
nion, WV 26456	 6								
	<u></u>								
			-						
	5				the fellowing its and				
•	_								
☐ Copy of lette	г	☐ Change order	L						
DATE	NO.		DES	SCRIPTION					
		Floodplain Packet for E	QT WEU 51 Wel	ls (Application, Site	Plans, Flood Analysis, Etc.)				
		\$500.00 SLS Check # 1	8259						
									
]							
E TRANSMITTE	ED as ch	ecked below:							
	ıl	☐ Approved a	is submitted	☐ Resubmit	copies for approval				
□ For your us	е	☐ Approved a	s noted	☐ Submit	_copies for distribution				
☐ As requeste	d	☐ Returned for	or corrections	☐ Return	_corrected prints				
		ment 🗆							
FOR BIDS I	DUE		_20	PRINTS RETURNE	D AFTER LOAN TO US				
	□ Shop drawing □ Çopy of lette DATE □ DATE	□ Shop drawings □ Copy of letter DATE NO. □ NO. □ Shop drawings □ Copy of letter NO. □ Shop drawings □ Shop drawings □ For approval □ For approval □ For your use □ As requested □ For review and communication of the shop	☐ Shop drawings ☐ Prints ☐ Change order ☐ Change order ☐ DATE NO ☐ Floodplain Packet for E ☐ \$500.00 SLS Check # I ☐ FOR BIDS DUE ☐ Por review and comment ☐ FOR BIDS DUE ☐ Change order	Shop drawings Prints Copy of letter Change order DATE NO. DESTRICT	DATE NO. DESCRIPTION Floodplain Packet for EQT WEU 51 Wells (Application, Site \$500.00 SLS Check # 18259 E TRANSMITTED as checked below: For approval Approved as submitted Resubmit For your use Approved as noted Submit As requested Returned for corrections Return For review and comment POR BIDS DUE PRINTS RETURNE				


DATE

P.O. BOX 150, GLENVILLE, WV 26351

LETTER OF TRANSMITTAL

(304) 462-5634 • FAX (304) 462-5656						DATE 2/12/16 8051				
					!	George Eidel				
Doddı	ridge	County Flo	odplain C	Coordinator		EQT WEU 51 & OXF	157 Flood Studies			
108 C	ourt :	St., Suite 1								
		n, WV 264	56							
							, , , , , , , , , , , , , , , , , , ,			
	>=\I	NNO VOLL	. 53 Au-	shada 🗖 Hadas aaaasa			Ab a fallowing items.			
ARES				ched Under separate			-			
		Shop drawii		☐ Prints		☐ Samples	☐ Specifications			
	П	Copy of lett	er	☐ Change order	L.I		· 			
OPIES		DATE	NO.			DESCRIPTION				
1				Floodplain Study for EQ	T WEU 51 (CD)	DOODRI			
l				Floodplain Study for EQ	T OXF 157 (0	CD)		A A		
							NTY T			
							\.\ 0.11			
ESE A	DE T	DANSMITT	TED as ch	ecked below:						
		For approv		☐ Approved as	submitted	☐ Resubmit	copies for approval			
		For your u		☐ Approved as	noted	☐ Submit	_copies for distribution			
		As request		☐ Returned for	corrections	☐ Return	_corrected prints			
		For review	and com	ment 🗆						
		FOR BIDS	DUE		20	☐ PRINTS RETURNE	D AFTER LOAN TO US			
MADKS	2									
WIF CO CO	_									
	It	f vou have a	anv auesti	ons or concerns on this inf	formation plea	ise feel free to call Adar	n Wilson or Wes Wayne at			
1-462-:		Thank you					•			
			_							
	<u>.</u>			<u></u>						
			\(\frac{1}{4}\)					-		
	CT (S Files								

PROFESSIONAL ENERGY CONSULTANTS

A DIVISION OF SMITH LAND SURVEYING, INC.

November 23, 2015

Mr. George Eidel Doddridge County Floodplain Coordinator 118 East Court Street West Union, WV 26456

Re: EQT Production Company- WEU 51 Proposed Well Pad and Access Road Enhancement

BEIL SCHERK OF THE BEIL OF THE

Mr. Eidel, -

On behalf of EQT Production Company, LLC, we are applying for a new Doddridge County Floodplain Permit due to the expiration of the existing permit (13-077). EQT has constructed a well pad and access road to aid in the development of Marcellus Shale gas wells. Total project disturbance is approximately 51.8 acres.

The access road passes through a portion of Zone A as indicated on FEMA Panel 54017C0120C. Please see the attached overlay mapping, which shows the limits of disturbance and the access roadway. We have also included the project site plans and hydraulic study for the project. The site plans have changed since the issuance of the first permit. The original permitted action was to install 4 15" CMP (Aluminum) pipes indicated in the attached hydraulic study which would have resulted in a raise to the BFE of no more than 0.96 feet. The new design will incorporate a low water concrete ford instead of the 4 15" CMP's. The low water concrete ford will be installed at the base of the streambed causing no change to occur to the BFE. No downstream properties will be affected. The proposed plans show the removal of the existing temporary steel bridge and the installation of a low water concrete ford. The temporary steel bridge shall be left in place until the low water concrete ford has been installed.

Included in the attachments are the following: Cover Letter, Site Plans, Stream Crossing Plans, Hydraulic Study, Signed Floodplain Application, and a copy of the previously issued permit (13-077).

If you have any questions, please call.

Adam Wilson Smith Land Surveying, Inc. P.O. Box 150 Glenville, WV 26351 (304) 462-5634 awilson@slssurveys.com

EQT Well Site Permit # WEU 51 13-077

DODDRIDGE COUNTY FLOODPLAIN DEVELOPMENT PERMIT APPLICATION

SECTION 1: GENERAL PROVISIONS (APPLICANT TO READ AND SIGN)

- 1. No work may start until a permit is issued.
- 2. The permit may be revoked if any false statements are made herein.
- 3. If revoked, all work must cease until permit is re-issued.
- 4. Development shall not be used or occupied until a Certificate of Compliance is issued.
- 5. The permit will expire if no work is commenced within six months of issuance.
- **6.** Applicant is hereby informed that other permits may be required to fulfill local, state, and federal requirements.
- 7. Applicant hereby gives consent to the Floodplain Administrator/Manager or his/her representative to make inspections to verify compliance.
- 8. I, THE APPLICANT CERTIFY THAT ALL STATEMENTS HEREIN AND IN ATTACHMENTS TO THIS APPLICATION ARE, TO THE BEST OF MY KNOWLEDGE, TRUE AND ACCURATE.

APPLICANT'S SIGNATURE /// 9- Jane
DATE
SECTION 2: PROPOSE DEVELOPMENT (TO BE COMPLETED BY APPLICANT).
IF THE APPLICANT IS NOT A NATURAL PERSON, THE NAME, ADDRESS, AND
TELEPHONE NUMBER OF A NATURAL PERSON WHO SHALL BE APPOINTED BY
THE APPLICANT TO RECEIVE NOTICE PURSUANT TO ANY PROVISION OF THE
CURRENT DODDRIDGE COUNTY FLOODPLAIN ORDINANCE.
APPLICANT'S NAME: EQT Production Company
ADDRESS: 115 Professional Place P.O. Box 280 Bridgeport, WV 26330
TELEPHONE NUMBER: 304-848-0076

BUILDER'S NAME: EQT Production Company
ADDRESS: 115 Professional Place P.O. Box 280 Bridgeport, WV 26330
TELEPHONE NUMBER: 304-848-0076
ENGINEER'S NAME: Cyrus S. Kump/ Navitus Engineering Inc.
ADDRESS: 151 Windy Hill Lane Winchester, VA 22602
TELEHONE NUMBER: 888-662-4185
PROJECT LOCATION:
NAME OF SURFACE OWNER/OWNERS (IF NOT THE APPLICANT) Mary H. Holland Estate of
Mary Holland % Jane Holland
ADDRESS OF SURFACE OWNER/OWNERS (IF NOT THE APPLICANT) 225 Watching Fork
Westfield, NJ 07090
DISTRICT: West Union
DATE/FROM WHOM PROPERTY PURCHASED: Property came out of estate of Mary Holland
LAND BOOK DESCRIPTION: Digital Courthouse- Bluestone 1207.637 Ac Int O&G
DEED BOOK REFERENCE: 286/313
TAX MAP REFERENCE: Tax map 23-04
EXISTING BUILDINGS/USES OF PROPERTY: hunting cabin
NAME OF AT LEAST ONE ADULT RESIDING IN EACH RESIDENCE LOCATED UPON THE SUBJECT
PROPERTY N/A
ADDRESS OF AT LEAST ONE ADULT RESIDING IN EACH RESIDENCE LOCATED UPON THE
SUBJECT PROPERTY N/A

To avoid delay in processing the application, please provide enough information to easily identify the project location. Please See affactual map

DESCRIPTION OF WORK (CHECK ALL APPLICABLE BOXES)

A. STRUCTURAL DEVELOPMENT

ACTIVITY					STRUCTURAL TYPE				
0	New Struct	ture			0	Residentia	l (1 – 4 Family)		
[]	Addition				0		l (more than 4 F	(umilu)	
[]	Alteration				0		ential (floodprod	• • •	
[]	Relocation						•		
[]	Demolition				[]		Use (res. & com	1.)	
[]	Manufactu		bil Home		()	Replaceme	ent		
В.	OTHER DE	VEOPLI	MENT ACTI\	/ITIES:		·			
[x]	Fill	[]	Mining	[x]	Drilling	g []	Pipelining		
[x]	Grading							:	
[]	Excavation	(except	for STRUCTUE	RAL DEVE	LOPMEN	T checked a	bove)		
[]	Watercours	se Altero	ation (includii	ng dredgi	ing and cl	hannel mod	ification)		
[x]	Drainage In	nprovem	ents (includir	ng culveri	t work)				
[x]	Road, Stree	et, or Brid	dge Construct	ion					
[]	Subdivision	(includi	ng new expan	ision)					
[]	Individual V	Nater or	Sewer Systen	n					
[]	Other (plea								
C.	STANDAR	RD SITE	PLAN OR SI	KETCH					
1.	SUBMIT AL	L STAND	ARD SITE PLA	NS, IF A	NY HAVE	BEEN PREP	ARED.		
2.			PLANS HAVE I						
	SKETCH ON	A SEPA	RATE 8 ½ X 11	INCH SH	EET OF P	APER THE S	HAPE AND LOCA	ATION OF	
	THE LOT. S	HOW TH	E LOCATION (OF THE II	NTENDED	CONSTRUC	TION OR LAND	USE	
	INDICATING	BUILDI	NG SETBACKS	, SIZE & I	HEIGHT.	IDENTIFY EX	ISTING BUILDIN	GS,	
	STRUCTURE	S OR LA	ND USES ON T	THE PRO	PERTY.				
3.	SIGN AND I	DATE TH	E SKETCH.			•			
ACTL	JAL TOTAL	CONST	RUCTION CO	OSTS OI	THE CO	OMPLETE	DEVELOPMEN	NT	
IRRE!	SPECTIVE O	F WHE	THER ALL O	R ANY I	PART OF	THE SUB	JECT PROPOS	ED	
			CT IS WITH						
,		1 1101	CI IS WILLI		LOUDE	PULL 3	70,000		

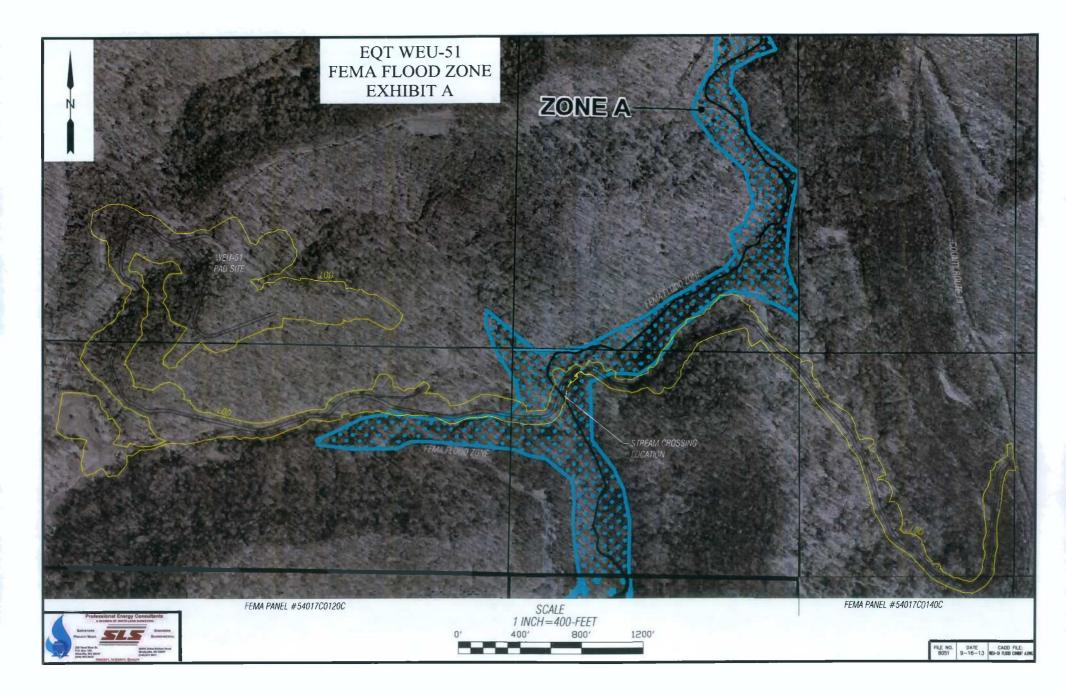
D. ADJACENT AND/OR AFFECTED LANDOWNERS:

1. NAME AND ADDRESS OF ALL OWNERS OF SURFACE TRACTS ADJACENT TO THE AREA OF THE SURFACE TRACT (UP & DOWN STREAM) UPON WHICH THE PROPOSED ACTIVITY WILL OCCUR AND ALL OTHER SURFACE OWNERS UP & DOWN STREAM) WHO OWN PROPERTY THAT MAY BE AFFECTED BY FLOODING AS IS DEMONSTRATED BY A FLOODPLAIN STUDY OR SURVEY (IF ONE HAS BEEN COMPLETED).

NAME: IMary Holland Estate % Jane Haroln	NAME: Charles Jr. and Barbara Wellings				
ADDRESS: 225 Watching Fork	ADDRESS: Hc 68 Box 3				
Westfield, NJ 07090	West Union, WV 26456				
)					
NAME: Pierce Ruth M. & Tom Davies	NAME: Charles P. Heaster ET AL				
ADDRESS: 1104 Greenmont Circle	ADDRESS:_Rr 1 Box 57				
Vienna, WV 26105	West Union, WV 264S6				
NAME:_I. L. Morris	•				
ADDRESS: P.O. Box 397					
Glenville, WV 26351					
NAME AND ADDRESS OF AT LEAST ONE LOCATED UPON ANY ADJACENT PROPE APPLICATION IS FILED AND THE NAME A	RTY AT THE TIME THE FLOODPLAIN PERMIT				
	ERTY THAT MAY BE AFFECTED BY FLOODING AS				
NAME: <u>James S. Donley</u>	NAME: Mary Farr				
ADDRESS: 1406 Doe Run	ADDRESS: Rt 1 Box 56A				
West Union, WV 26456	West Union, WV 26456				
NAME: Charles P. Heaster	NAME:				
ADDRESS: Rr 1 Box 57	ADDRESS:				
West Union, WV 26456					

E. CONFIRMATION FORM

THE APPLICANT ACKNOWLEDGES, AGREES, AND CONFIRMS THAT HE/IT WILL PAY WITHIN 30 DAYS OF RECEIPT OF INVOICE BY THE COUNTY FOR ALL EXPENSES RELATIVE TO


THE PERMIT APPLICATION PROCESS GREATER THAN THE REQUIRED DEPOSIT FOR EXPENSES INCLUDING:

- (A) PERSONAL SERVICE OF PROCESS BY THE DODDRIDGE COUNTY SHERIFF AT THE RATES PERMITTED BY LAW FOR SUCH SERVICE.
- (B) SERVICE BY CERTIFIED MAIL RETURN RECEIPT REQUESTED.
- (C) PUBLICATION.
- (D) COURT REPORTING SERVICES AT ANY HEARINGS REQUESTED BY THE APPLICANT.
- (E) CONSULTANTS AND/OR HEARING EXPERTS UTILIZED BY DODDRIDGE COUNTY FLOODPLAIN ADMINISTRATOR/MANAGER OR FLOODPLAIN APPEALS BOARD FOR REVIEW OF MATERIALS AND/OR TESTIMONY REGARDING THE EFFICACY OF GRANTING OR DENYING THE APPLICANT'S FLOODPLAIN PERMIT.

NAME	(PRINT):	yΥ\	egan E.	<u>Condtr</u>	ied		
		Mega	J.			DATE:	10/11/13
		SECTION 2, danager or h			ibmit form to for review.	Floodplain	
		OODPLAIN				pleted by f	<u>iloodplain</u>
		D DEVELO					
THE P	ROPOSED	DEVELOPME	NT IS LOC	ATED ON:			•
FIRM I	Panel:			10/04	12011		
0	Is <u>NOT</u> lo	cated in a S _l	pecific Flo	od Hazard A	rea (Notify ap	oplicant that t	he application D).
	F	d in Special F IRM zone de DO-Year floo	signation_		1 A		NGVD (MSL)
ø.	Unavaila				, ,		· · · ·

U	The proposed development is located in a floodway. FBFM Panel No	Dated						
	See section 4 for additional instructions. SIGNED Moldan	DATE 11/04/2013						
	TION 4: ADDITIONAL INFORMATION REQUIRED (T dplain Administrator/Manager or his/her repress							
	applicant must submit the documents checked below beforessed.	re the application can be						
0	A plan showing the location of all existing structures, water bodies, adjacent roads, lot dimensions and proposed development.							
0	Development plans, drawn to scale, and specifications, in details for anchoring structures, storage tanks, proposed (including basement or crawl space), types of water resing first floor, details of flood proffing of utilities located be enclosures below the first floor. Also	d elevation of lowest floor, stant materials used below the low the first floor and details of						
0	Subdivision or other development plans (If the subdivisi lots or 5 acres, whichever is the lesser, the applicant mule elevations if they are not otherwise available).	•						
0	Plans showing the extent of watercourse relocation and	or landform alterations.						
0	Top of new fill elevation							

engineer or architect.

Attachment A Identified and Delineated Stream/Wetland Characteristics and Estimated Impacts Well Site WEU 51 Expansion Doddridge County, West Virginia

		<u> </u>	Stream/Wetland Crossing		1	l				1		1
Stream/Wetland	Stream/Wetland Classification	Impact Type	Latitude (°N)	Longitude (°W)	Stream Length (ft)/Wetland Acreage within AOI'	Bank Full Height (ft)	Bank Full Width (ft)	Proposed Impacts* (linear feet)	Estimated Volume of Impacts (ft ³)	Estimated Imparts (vd²)	Estimated Impacts (ft ²).	Estimated Impacts (acres)
				<u> </u>							· 	
Unnamed Tributary No. 1 (UNT 1)	Ephemeral, Nun- Relatively Pennanent (Non-RPW)		No Propos	sed Impacts	124.18	0.4	2.0	***				***
Unnamed Tributary No. 2 (UNT 2)	Ephemeral, Non-RPW		No Propos	sed Impacts	19.31	0.6	2.0					•••
Unnumed Tributary No. 3 (UNT 3)	Intermittent, Relatively Permanent (RPW)	Access Road Culvert and Rip- Rap Outlet Protection	39.250279	-80.745673	1,083.49	0.7	4.0	н	30.16	1.12	43.09	0.0010
Unnamed Tributary No. 4 (UNT 4)	Ephemeral, Non-RPW	Access Road Culvors and Rip- Rap Outlet Protection	39.250107	-80.746802	286.26	0.4	3.0	74	88.79	3.29	221.96	0.0051
Unnamed Tributary No. 5 (UNT 5)	Ephemeral, Non-RPW	Access Road Culvert and Rip- Rap Outlet Protection	39.249867	-80.746085	307.49	0.9	3.5	48	152.72	5.66	169.69	0.0039
Unnamed Tributary No. 6 (UNT 6)	Ephemeral, Non-RPW	Access Road Culvers and Rip- Rap Outlet Protection	39.250547	-80.747388	262.64	0.4	2.0	101	80.48	2.98	201.19	0.0046
Unnamed Tributary No. 7 (UNT 7)	Ephemeral, Non-RPW	Access Road Culvers and Rip- Rap Outlet Protection	39.250792	-80.747834	228.17	0.3	1.5	117	52.66	1.95	175.52	0.0040
Unnamed Tributary No. 8 (UNT 8)	Ephemeral, Non-RPW		No Propos	sed Impacts	18.50	0.8	3.0			***		
Unnamed Tributary No. 9 (UNT 9)	Ephemeral, Non-RPW				341.47	0.8	2.0	128	204.14	7.56	255.18	0.0059
Unnamed Tributary No. 10 (UNT 10)	Ephemeral, Non-RPW	Access Road Culvert and Rip- Rap Outlet Protection	39.251202	-80.748104	160.10	0.1	1.1	35	3.90	0.14	38.98	0.0009
Unnamed Tributary No. 11 (UNT 11)	Ephemeral, Non-RPW				37.17	0.4	1.5	5	3.00	0.11	7.50	0.0002
Unnamed Tributary No. 12 (UNT 12)	Ephemeral, Non-RPW	Access Road Culvert and Rep- Ran Outlet Protection	39.252409	-80.748669	212.25	0.1	1.0	169	16.89	0.63	168.86	0.0039
Unnamed Tributary No. 13 (UNT 13)	Ephemeral, Non-RPW	Access Road Culvert and Rep- Ren Chelles Persection Access Road Culvert and Rep-	39.252864	-80.749005	162.05	0.3	1.0	85	25.63	0.95	85.43	0.0020
Unnamed Tributary No. 14 (UNT 14)	Ephemeral, Non-RPW	Access Read Culvers and Rap- Ran Outlet Protection Access Road Culvers and Rep-	39.253416	-80.749600	99.18	0.4	1.5	55	33.04	1.22	82.61	0.0019
Unnamed Tributary No. 15 (UNT 15)	Ephemeral, Non-RPW	Ran Ombo Protestion	39,253810	-80.750020	158.25	0.8	1.5	108	129.71	4.80	162.14	0.0037
Unnamed Tributary No. 16 (UNT 16)	Ephemeral, Non-RPW	Access Road Culvert and Rip- Ran Order Provention	39.254226	-80.750638	133.81	0.2	1.0	53	10.57	0.39	52.83	0.0012
Unnamed Tributary No. 17 (UNT 17)	Ephemeral, Non-RPW/Potentially Isolated	Access Road Cubert and Rip- Ran Outlet Protection Access Road Cubert and Kip-	39.254366	-80.752502	158.67	0.2	1.2	159	38.08	1.41	190.40	0.0044
Unnamed Tributary No. 18 (UNT 18)	Ephemeral, Non-RPW/Potentially Isolated	Access Road Culvert and Ksp- Ran Ontlet Protection	39.253627	-80.753382	251.49	0.3	2.8	176	147.77	5.47	492.56	0.0113
Bluestone Creek (UNT 19)	Perennial, RPW	Permanent Culvert Outlet Protection/Low Water Crossing and Temporary Bridge Crossing	39.253355	-80.755572	474.82	1.5	10.5	115	1807.19	66.93	1204.79	0.0277
Unnamed Tributary No. 20 (UNT 20)	Intermittent, RPW		No Propos	ed Impacts	124.69	0.2	9.0		-			
Unnamed Tributary No. 21 (UNT 21)	Intermittent, RPW		No Propos	ed Impacts	786.91	0.4	5.7					
Unnamed Tributary No. 21 (UNT 21)	Perennial, RPW	Access Road Culvert	39.252323	-80.764506	3,149.65	1.2	17.0	190	3881.00	143.74	3234.17	0.0742
Branch of UNT 21 (Split Channel Section)	Ephemeral, Non-RPW	and Rip-Rap Outlet Protection	37.2323	100.701300	126.78	0.2	3.0	49	29.47	1.09	147.34	0.0034
Unnamed Tributary No. 22 (UNT 22)	Ephomeral, Non-RPW	-	No Propos	ed Impacts	226.07	0.1	1,0					
Unnamed Tributary No. 23 (UNT 23)	Ephemeral, Non-RPW		No Propos	ed Impacts	212.14	0.2	1.0		- [-		

POTESTA Project No. 0101-11-0147-5101

15-405 Extraduction Company-WE USI Proposed well Pad + Access RD enhangement

DODDRIDGE COUNTY FLOODPLAIN DEVELOPMENT PERMIT APPLICATION

SECTION 1: GENERAL PROVISIONS (APPLICANT TO READ AND SIGN)

- 1. No work may start until a permit is issued.
- 2. The permit may be revoked if any false statements are made herein.
- 3. If revoked, all work must cease until permit is re-issued.
- **4.** Development shall not be used or occupied until a Certificate of Compliance is issued.
- 5. The permit will expire if no work is commenced within six months of issuance.
- **6.** Applicant is hereby informed that other permits may be required to fulfill local, state, and federal requirements.
- 7. Applicant hereby gives consent to the Floodplain Administrator/Manager or his/her representative to make inspections to verify compliance.

Seesa) (podos

8. I, THE APPLICANT CERTIFY THAT ALL STATEMENTS HEREIN AND IN ATTACHMENTS TO THIS APPLICATION ARE, TO THE BEST OF MY KNOWLEDGE, TRUE AND ACCURATE.

APPLICANT'S SIGNATURE / Y QCOCC / GCCC C
DATE 11/19/15
SECTION 2: PROPOSE DEVELOPMENT (TO BE COMPLETED BY APPLICANT).
IF THE APPLICANT IS NOT A NATURAL PERSON, THE NAME, ADDRESS, AND
TELEPHONE NUMBER OF A NATURAL PERSON WHO SHALL BE APPOINTED BY
THE APPLICANT TO RECEIVE NOTICE PURSUANT TO ANY PROVISION OF THE
CURRENT DODDRIDGE COUNTY FLOODPLAIN ORDINANCE.
APPLICANT'S NAME: EQT Production Company
ADDRESS: 115 Professional Place P.O. Box 280 Bridgeport, WV 26330
TELEPHONE NUMBER: 304-848-0076

To avoid delay in processing the application, please provide enough information to easily identify the project location.

DESCRIPTION OF WORK (CHECK ALL APPLICABLE BOXES)

A. STRUCTURAL DEVELOPMENT

	AC	<u>, i i V i i i</u>			MAL ITPE					
0 0 0 0 0	New Struct Addition Alteration Relocation Demolition Manufact	ı n	bil Home		0 0 0 0 0	Residential (1 – 4 Family) Residential (more than 4 Family) Non-residential (floodproofing) Combined Use (res. & com.) Replacement				
В.	OTHER DE	VEOPL	MENT ACTIV	/ITIES:						
[x] [] [] [x] [x] [x] [] []	Watercoul Drainage I Road, Stre Subdivisio	rse Alterc mprovem et, or Brid n (includi Water or	Mining for STRUCTUR ation (includinents (includinents described by the construction of	ng dredgi ng culvert :ion nsion)	ng and ch	Г checked ab	•			
C.			PLAN OR SI		NY HAVE	BEEN PRFPA	RFD.			

CTRUCTURAL TYPE

- 2. IF STANDARD SITE PLANS HAVE NOT BEEN PREPARED:

 SKETCH ON A SEPARATE 8 ½ X 11 INCH SHEET OF PAPER THE SHAPE AND LOCATION OF THE LOT. SHOW THE LOCATION OF THE INTENDED CONSTRUCTION OR LAND USE INDICATING BUILDING SETBACKS, SIZE & HEIGHT. IDENTIFY EXISTING BUILDINGS, STRUCTURES OR LAND USES ON THE PROPERTY.
- 3. SIGN AND DATE THE SKETCH.

ACTIVITY

ACTUAL TOTAL CONSTRUCTION COSTS OF THE COMPLETE DEVELOPMENT IRRESPECTIVE OF WHETHER ALL OR ANY PART OF THE SUBJECT PROPOSED CONSTRUCTION PROJECT IS WITHIN THE FLOODPLAIN \$ 40,000.00

D. ADJACENT AND/OR AFFECTED LANDOWNERS:

1. NAME AND ADDRESS OF ALL OWNERS OF SURFACE TRACTS ADJACENT TO THE AREA OF THE SURFACE TRACT (UP & DOWN STREAM) UPON WHICH THE PROPOSED ACTIVITY WILL OCCUR AND ALL OTHER SURFACE OWNERS UP & DOWN STREAM) WHO OWN PROPERTY THAT MAY BE AFFECTED BY FLOODING AS IS DEMONSTRATED BY A FLOODPLAIN STUDY OR SURVEY (IF ONE HAS BEEN COMPLETED).

NAME: Mary Holland Estate % Jane Hardin	NAME: Charles Jr. and Barbara Wellings
ADDRESS: 225 Watching Fork	ADDRESS: Hc 68 Box 3
ADDRESS: 225 Watching Fork Westfield, NJ 07090 NAME: Pierce Ruth M. & Tom Davies ADDRESS: 1104 Greenmont Circle Vienna, WV 26105 NAME: I. L. Morris ADDRESS: P.O. Box 397 Glenville, WV 26351 1. NAME AND ADDRESS OF AT LEAST OF LOCATED UPON ANY ADJACENT PRO APPLICATION IS FILED AND THE NAME RESIDING IN ANY HOME ON ANY PRO IS DEMONSTRATED BY A FLOODPLAME: James S. Donley	West Union, WV 26456
NAME: Pierce Ruth M. & Tom Davies	NAME: Charles P. Heaster ET AL
ADDRESS: 1104 Greenmont Circle	ADDRESS: Rr 1 Box 57
Vienna, WV 26105	West Union, WV 26456
NAME: I. L. Morris	
ADDRESS: P.O. Box 397	
Glenville, WV 26351	
LOCATED UPON ANY ADJACENT PROPE APPLICATION IS FILED AND THE NAME A	RTY AT THE TIME THE FLOODPLAIN PERMIT AND ADDRESS OF AT LEAST ONE ADULT ERTY THAT MAY BE AFFECTED BY FLOODING AS
NAME: James S. Donley	NAME: Mary Farr
ADDRESS: 1406 Doe Run	ADDRESS:_Rt 1 Box 56A
West Union, WV 26456	West Union, WV 26456
NAME: Charles P. Heaster	NAME:
ADDRESS: Rr 1 Box 57	
West Union, WV 26456	_

E. CONFIRMATION FORM

THE APPLICANT ACKNOWLEDGES, AGREES, AND CONFIRMS THAT HE/IT WILL PAY WITHIN 30 DAYS OF RECEIPT OF INVOICE BY THE COUNTY FOR ALL EXPENSES RELATIVE TO

THE PERMIT APPLICATION PROCESS GREATER THAN THE REQUIRED DEPOSIT FOR EXPENSES INCLUDING:

- (A) PERSONAL SERVICE OF PROCESS BY THE DODDRIDGE COUNTY SHERIFF AT THE RATES PERMITTED BY LAW FOR SUCH SERVICE.
- (B) SERVICE BY CERTIFIED MAIL RETURN RECEIPT REQUESTED.
- (C) PUBLICATION.
- (D) COURT REPORTING SERVICES AT ANY HEARINGS REQUESTED BY THE APPLICANT.
- (E) CONSULTANTS AND/OR HEARING EXPERTS UTILIZED BY DODDRIDGE COUNTY FLOODPLAIN ADMINISTRATOR/MANAGER OR FLOODPLAIN APPEALS BOARD FOR REVIEW OF MATERIALS AND/OR TESTIMONY REGARDING THE EFFICACY OF GRANTING OR DENYING THE APPLICANT'S FLOODPLAIN PERMIT.

NAME (PRINT):	hacoa	. Corder		
SIGNATURE:	Jacoa (c	order	DATE:	11/19/15
After completing S	SECTION 2, APPLICA	NT should submit f	orm to Floodplain	
Administrator/Ma	anager or his/her rep	presentative for rev	iew.	
	OODPLAIN DETER			y Floodplain
<u>Administrator/</u>	Manager or his/	<u>her representati</u>	<u>ve)</u>	
THE PROPOSED	DEVELOPMENT	:		
THE PROPOSED D	EVELOPMENT IS LO	CATED ON:		
FIRM Panel:				
Dated:				
	cated in a Specific Florestee and NO FLOOPLA	•		• •
[] Is located	in Special Flood Haz	ard Area.		
	RM zone designation			
10	0-Year flood elevation	on is:		NGVD (MSL
Π Unavailab	ıle			

[]	The proposed development is located in a floodway.	
	FBFM Panel No	Dated
[]	See section 4 for additional instructions.	
	SIGNED	DATE
<u>SECT</u>	<u> </u>	To be completed by
Floo	dplain Administrator/Manager or his/her repres	entative)
The a	pplicant must submit the documents checked below beforessed.	ore the application can be
[]	A plan showing the location of all existing structures, w dimensions and proposed development.	ater bodies, adjacent roads, lot
[]	Development plans, drawn to scale, and specifications, details for anchoring structures, storage tanks, propose (including basement or crawl space), types of water restirst floor, details of flood proffing of utilities located be enclosures below the first floor. Also	ed elevation of lowest floor, sistant materials used below the elow the first floor and details of
0	Subdivision or other development plans (If the subdivis lots or 5 acres, whichever is the lesser, the applicant melevations if they are not otherwise available).	
[]	Plans showing the extent of watercourse relocation and	d/or landform alterations.
[]	Top of new fill elevation For floodproofing structures applicant must attach cert engineer or architect.	

]	floodway wil	from a registered engineer that the proposed activity in a regulatory not result in any increase in the height of the 100-year flood. A copy of all culations supporting this finding must also be submitted.
]	Contractor's	d homes located in a floodplain area must have a West Virginia License and a Manufactured Home Installation License as required by the gency Management Agency (FEMA).
[]	Other:	
<u>SEC</u>		IT DETERMINATION (To be completed by Floodplain tor/Manager or his/her representative)
	provisions of	nined that the proposed activity (type is or is not) in conformance with the Floodplain Ordinance adopted by the County Commission of Doddridge ay 21, 2013. The permit is issued subject to the conditions attached to and this permit.
	SIGNED	DATE
	with the pro	lain Administrator/Manager found that the above was not in conformance visions of the Doddridge County Floodplain Ordinance and/or denied that the applicant may complete an appealing process below.
	APPEALS:	Appealed to the County Commission of Doddridge County? [] Yes {} No Hearing Date:
		County Commission Decision - Approved [] Yes [] No
	CONDITIONS	<u> </u>
	···	

SECTION 6: AS-BUILT ELEVATIONS (To be submitted by APPLICANT before Certificate of Compliance is issued).

The following information must be provided for project structures. This section must be completed by a registered professional engineer or a licensed land surveyor (or attach a certification to this application).

COMPL	EIE 1	OR Z	RELOM:
-------	-------	------	--------

1	Actual (As-Built) Elevation of the top of the lowest floor (including basement or
_	crawl space isFT. NGVD (MSL)
2	
2	Actual (As Built) elevation of floodproofing isFT. NGVD (MSL)
Note: applic	Any work performed prior to submittal of the above information is at risk of the ant.
	ION 7: COMPLIANCE ACTION (To be completed by the Floodplain inistrator/Manager or his/her representative).
as app	oodplain Administrator/Manager or his/her representative will complete this section blicable based on inspection of the project to ensure compliance with the Doddridge y Floodplain Ordinance.
IN	SPECTIONS:
	DATE: BY:
	DEFICIENCIES ? Y/N
CC	DMMENTS

SECTION 8: CERTIFICATE OF COMPLIANCE (To be completed by Floodplain Administrator/Manager or his/her representative).

Certificate of Compliance issued: DATE: BY:	
CERTIFICATE OF COMPLIANCE	
FOR DEVELOPMENT IN SPECIAL FLOOD HAZARD AREA	
(OWNER MUST RETAIN)	
PERMIT NUMBER:	
PERMIT DATE:	
PURPOSE –	
CONSTRUCTION LOCATION:	
OWNER'S ADDRESS:	

THE FOLLOWING MUST BE COMPLETED BY THE FLOODPLAIN ADMINISTRATOR/MANAGER OR HIS/HER AGENT.

COMPLIANCE IS HEREBY CERTIFIED WITH THE REQUIREMENT OF THE FLOODPLAIN ORDINANCE ADOPTED BY THE COUNTY COMMISSION OF DODDRIDGE COUNTY ON MAY 21, 2013.

SIGNEDDATE	

DEPARTMENT OF THE ARMY HUNTINGTON DISTRICT, CORPS OF ENGINEERS 502 EIGHTH STREET HUNTINGTON, WEST VIRGINIA 25701-2070

JAN 2 8 2014

Regulatory Division
Energy Resource Branch
LRH-2013-01017-OHR- Bluestone Creek
EQT Production Company Well Site WEU 51

PRELIMINARY JURISDICTIONAL DETERMINATION AND NATIONWIDE PERMIT NO. 14 VERIFICATION

Ms. Megan Landfried EQT Production Company 115 Professional Place Bridgeport, West Virginia 26330

Dear Ms. Landfried:

I refer to the Pre-Construction Notification (PCN) received in this office on November 25, 2013, with final PCN revisions received in the office on January 10, 2014 requesting authorization to discharge dredged and/or fill material into waters of the United States in conjunction with the EQT Production Company Well Site WEU 51 Project. The proposed work is located in streams and wetlands of Bluestone Creek. Bluestone Creek is a perennial tributary to Middle Island Creek, a traditional navigable water (TNW) of the United States. The proposed project is located approximately 2.7 aerial miles west of Blandville, Doddridge County, West Virginia. The approximate center coordinates of the site are located at 39.255748°North, 80.763153 °West. The PCN has been assigned the following file number: LRH-2013-01017-OHR-Bluestone Creek. Please reference this number on all future correspondence related to this project.

The United States Army Corps of Engineers (Corps) authority to regulate waters of the United States is based on the definitions and limits of jurisdiction contained in 33 CFR 328 and 33 CFR 329. Section 404 of the Clean Water Act (Section 404) requires a Department of the Army (DA) permit be obtained prior to discharging dredged or fill material into waters of the United States, including wetlands. Section 10 of the Rivers and Harbors Act of 1899 (Section 10) requires a DA permit be obtained for any work in, on, over or under a navigable water.

Based on a review of the PCN report submitted to our office, on-site field verification November 8, 2013, and other data available to us, this office has determined that both jurisdictional and non-jurisdictional waters are present within the delineation boundary; therefore, the enclosed *Well Site WEU 51 JD Map* has been labeled with a preliminary jurisdictional determination (JD) boundary and an approved JD boundary.

Preliminary Jurisdictional Determination Boundary:

Based on a review of the aquatic resources in the PCN, twenty-five (25) streams (4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 6B, 25, 26, 30, 33, 26A, 27A, 28A and 11B) and one wetland (Wetland 2) are located within the proposed project area, as described in Tables 1 and 2 below and as depicted within the preliminary JD boundary of the enclosed Well Site WEU-51-JD-Map. The on-site aquatic resources may be waters of the United States in accordance with the Regulatory Guidance Letter for Jurisdictional Determinations (JDs) issued by the Corps on June 26, 2008 (Regulatory Guidance Letter No. 08-02). As indicated in the guidance, this Preliminary Jurisdictional Determination (PJD) is non-binding and cannot be appealed (33 C.F.R. 331.2) and only provides a written indication that waters of the United States may be present on-site.

You have declined to exercise the option to obtain an approved JD in this instance and at this time. However, for the purpose of the determination of impacts, compensatory mitigation, and other resource protection measures for activities that require authorization from this office, the streams and wetland referenced above will be evaluated as if they are waters of the United States.

Enclosed please find two (2) copies of the PJD form. If you agree with the findings of this PJD and understand your options regarding the same, please sign and date one copy of the PJD form and return it to this office within 30 days of receipt of this letter. You should submit the signed copy to the following address:

United States Army Corps of Engineers
Huntington District
Attn: Energy Resource Branch
502 Eighth Street
Huntington, West Virginia 25701.

Approved Jurisdictional Determination Boundary:

The approved JD boundary contains two (2) isolated, non-jurisdictional wetlands totaling 0.072 acre. The isolated, non-jurisdictional wetlands are located within an existing well pad area and they do not possess a surface hydrologic connection to a water of the United States. Refer to the enclosed EQT Production Company-WEU Well Site 51 JD - APPROVED JD TABLE and WEU Well Site 51 JD Jurisdictional Determination Map for a detailed summary of non-jurisdictional features. The aforementioned non-jurisdictional determination is based on guidance that became effective on May 29, 1998. This guidance was the result of the United States v. Wilson, 133 F. 3d 251 (4th Cir. 1997). Isolated wetlands and stream reaches may be subject to permitting requirements by the West Virginia Department of Environmental Protection (WVDEP).

If you object to the approved JD, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and Request for Appeal (RFA) form. If you request to appeal this determination you

must submit a completed RFA form to the Great Lakes and Ohio River Division Office at the following address:

U.S. Army Corps of Engineers Great Lakes and Ohio River Division 550 Main Street, Room 10524 Cincinnati, OH 45202-3222 Phone: (513) 684-7261

Fax: (513) 684-2460

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR Part 331.5, and that it has been received by the Division Office within 60 days of the date of the NAP. Should you decide to submit an RFA form, it must be received at the above address by MAR 29 2014. It is not necessary to submit an RFA form to the Division office if you do not object to the determination in this letter.

Based on the information provided, your approved JD delineation is verified. The approved JD is valid for a period of five years from the date of this letter unless new information warrants revision of the delineation prior to the expiration date. The preliminary JD is a non-binding action and has no expiration date (RGL No. 05-02).

Nationwide Permit 12 Verification:

The proposed project, as described in the submitted information, has been reviewed in accordance with Section 404 and Section 10. Based on your description of the proposed work, and other information available to us, it has been determined that this project will not involve activities subject to the requirements of Section 10. However, this project will include the discharge of dredged or fill material into waters of the United States subject to the requirements of Section 404.

In the PCN received in this office on November 25, 2013, and final PCN revisions received in the office on January 10, 2014, you have requested DA authorization to discharge dredged and/or fill material into 2,616 linear feet of 25 streams, and 0.01 acre of one wetland, for the construction of an access road involving 22 single and complete projects, as described in Tables 1 and 2 below. The proposed discharge of dredged and/or fill material into waters of the United States is described attached Table 1.

Based on your description of the proposed work, it has been determined the proposed discharge of dredged and/or fill material into waters of the United States, as described on Tables 1 and 2 enclosed with this letter, for the construction of the Well Site WEU 51 access road Project meets the criteria for authorization under Nationwide Permit Number (NWP) #14 (enclosed) under the February 21, 2012 Federal Register, Notice of Reissuance of NWPs (77 FR 10184) provided you comply with all terms and conditions of the enclosed material. The enclosed special conditions are hereby included as part of this permit and must be met to validate this authorization. A copy of this NWP can be found on our website at

http://www.lrh.usace.army.mil/Missions/Regulatory.aspx. Please note that you must comply with all applicable terms and conditions of the enclosed material and the attached special conditions for the authorizations to be valid.

In view of the above, your linear transportation project is authorized subject to the terms and conditions of the enclosed material. It is your responsibility to ensure that your work conforms to all of the environmental management conditions listed within the enclosed material. Please be aware this NWP verification does not obviate the requirement to obtain any state or local assent required by law for the activities.

This verification is valid until the expiration date of the NWPs, unless the NWP authorization is modified, suspended, or revoked. The verification will remain valid if the NWP authorization is reissued without modification or the activity complies with any subsequent modification of the NWP authorization. All of the existing NWPs are scheduled to be modified, reissued, or revoked on March 18, 2017. Prior to this date, it is not necessary to contact this office for re-verification of your project unless the plans for the proposed activity are modified. Furthermore, if you commence or under contract to commence this activity before March 18, 2017, you will have twelve (12) months from the date of the modification or revocation of the NWP to complete the activity under the present terms and conditions of this NWP.

A copy of this NWP and verification letter must be supplied to your project engineer responsible for construction activities. A copy of the verification letter must be kept at the site during construction. Upon completion of the work, the attached certification must be signed and returned to this office. If you have any questions concerning the above, please contact Audrey Richter at (304) 399-5257 or by email at Aurey.M.Richter@usace.army.mil.

Sincerely,

Mark A. Taylor

Chief, Energy Resource Branch

Mark a Jaylon

Enclosures

CF: via email (w/out encls)

Mr. Beth Burdette
Potesta & Associates, Inc.
7012 MacCorkle Avenue, SE
Charleston, West Virginia 25304

Table 1-Authorized discharge of dredged and/or fill material into streams associated with the construction of an access road associated with the EQT Production Company Well Site WEU Site 51 Project

LRH-2013-01017-OHR-Bluestone Creek

Stream ID	Flow Regime	Stream Length in LOD	Fill Length of stream	Fill Area of Stream	Regulated Discharge of Fill Activity
	<u> </u>	(linear feet)	(linear feet)	(асге)	
UNT 4	Ephemeral	286.3	74	0.0051	Culvert/Rip-Rap- Access Road Construction
UNT 5	Ephemeral	307.5	48	0.0039	Culvert/Rip-Rap- Access Road Construction
UNT 6	Ephemeral	262.6	101	0.0046	Culvert/Rip-Rap- Access Road Construction
UNT 7	Ephemeral	228.2	117	0.0040	Culvert/Rip-Rap- Access Road Construction
UNT 9	Ephemeral	341.5	128	0.0059	Culvert/Rip-Rap- Access Road Construction
UNT 10	Ephemeral	161.1	35	0.0009	Culvert/Rip-Rap- Access Road Construction
UNT 11	Ephemeral	37.2	5	0.0002	Culvert/Rip-Rap- Access Road Construction
UNT 12	Ephemeral	212.3	169	0.0039	Culvert/Rip-Rap- Access Road Construction
UNT 13	Ephemeral	162.1	85	0.0020	Culvert/Rip-Rap- Access Road Construction
UNT 14	Ephemeral	99.2	55	0.0019	Culvert/Rip-Rap- Access Road Construction
UNT 15	Ephemeral	158.3	108	0.0037	Culvert/Rip-Rap- Access Road Construction
UNT 16	Ephemeral	133.9	53	0.0012	Culvert/Rip-Rap- Access Road Construction
UNT 17	Ephemeral	158.7	159	0.0044	Culvert/- Access Road Construction
UNT 18	Ephemeral	251.5	176	0.0113	Culvert/Rip-Rap- Access Road Construction
Bluestone Creek (Stream 19)	Perennial	474.8	115	0.0277	Permanent Ford- Access Road Construction
UNT 24	Ephemeral	187.0	153	0.0046	Rip-Rap associated with Access Road

					Construction
UNT 6B	Ephemeral	42.5	42	0.0023	Culvert/Rip-Rap- Access Road Construction
UNT 25	Ephemeral	585.4	93	0.0030	Culvert/Rip-Rap- Access Road Construction
UNT 26	Ephemeral	160.3	83	0.0019	Culvert/Rip-Rap- Access Road Construction
UNT 30	Ephemeral	313.62	237	0.0027	Culvert/Rip-Rap- Access Road Construction
UNT 33	Intermittent	129.0	82	0.0026	Culvert/Rip-Rap- Access Road Construction
UNT 26A	Ephemeral	1,071.6	189	0.0174	Culvert/Rip-Rap- Access Road Construction
UNT 27A	Ephemeral	146.0	79	0.0032	Permanent Fill- Access Road Construction
UNT 28A	Ephemeral	164.4	143	0.0045	Culvert/Rip-Rap- Access Road Construction
UNTIIB	Ephemeral	90.2	87	0.0046	Permanent Fill- Access Road Construction

Table 2-Authorized discharge of dredged and/or fill material into wetlands associated with the construction of an access road associated with the EQT Production Company Well Site WEU Site 51 Project

LRH-2013-01017-OHR-Bluestone Creek

Wetland ID	Classification	Area in LOD (acres)	Fill Area of Wetland (acres)	Regulated Discharge of Fill Activity
Wetland 2	PEM	0.014	0.001	Culvert/Rip-Rap- Access Road Construction

Nationwide Permit 14 Verification Special Conditions EQT Production Company Well Site WEU 51 Access Road LRH-2013-01017-OHR- Bluestone Creek

- 1. The proposed project site lies within the range of the Indiana bat (Myotis sodalis), a Federally-listed endangered species, and within the range of the northern long-eared bat (Myotis septentrionalis), a proposed endangered species. To avoid adverse impacts to the Indiana bat and the northern long-eared bat, the permittee shall preserve trees wherever possible. Should suitable habitat be present that cannot be saved during construction activities, these trees should only be cut between November 15 through March 31. If the permittee is unable to adhere to the seasonal tree-cutting restriction, further consultation under Section 7 of the Endangered Species Act will be necessary. The United States Fish and Wildlife Service may be contacted by mail at USFWS West Virginia Field Office, 694 Beverly Pike, Elkins, West Virginia, 26241, or by phone at (304) 636-6586. The permittee must also contact the Regulatory Division in the event adherence to the seasonal tree-cutting restriction cannot be met.
- 2. Section 7 obligations under Endangered Species Act must be reconsidered if new information reveals impacts of the project that may affect federally listed species or critical habitat in a manner not previously considered, the proposed project is subsequently modified to include activities which were not considered during Section 7 consultation with the United States Fish and Wildlife Service, or new species are listed or critical habitat designated that might be affected by the subject project.

EQT PRODUCTION COMPANY WELL SITE WEU 51 - APPROVED JD TABLE

DA # LRH-2013-01017-OH	R		Jurisdictional						Non	-Jurisdictio	nal	
			Streams - linear feet W			Wetland	Wetland Imp/Pond Streams/Ditches - linear feet			Wetland	Imp/Pond	
Name	RR	JD	per.	int.	eph.	acre	acre	per.	int.	eph.	acre	acre
Wetland 1A		Isolated				I —					0.010	
Wetland 2A		Isolated									0.062	
		TOTALS:	0.00	0.00	0.00	0.000	0.000	0.00	0.00	0.00	0.072	0.000
				0.00				-	0.00			

^{*}RPW - relatively permanent water

^{*}NRPW - non-relatively permanent water subject to significant nexus determination


^{*}RPWWD - wetland abutting relatively permanent water

^{*}RPWWN - wetland adjacent to a relatively permanent water, and may or may not be abutting or adjacent to a NRPW or NJD

^{*}ISOLATED - isolated/non-jurisdictional water

^{*}NJD - non-jurisdictional water

^{*}UPLAND - features that do not exhibit a stream or water resource, and may or may not be a hydraulic connection for other waters

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

Appl	icant: EQT Production Company	File Number: 2013-01017	Date: 1/28/2014
Attac	ched is:	See Section below	
	INITIAL PROFFERED PERMIT (Stand	A	
	PROFFERED PERMIT (Standard Permit or Letter of permission)		В
	PERMIT DENIAL		С
X	APPROVED JURISDICTIONAL DETERMINATION		D
	PRELIMINARY JURISDICTIONAL D	ETERMINATION	E

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at http://usace.army.mi/inet/functions/cw/cecwo/reg or Corps regulations at 33 CFR Part 331.

- A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.
- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your
 signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights
 to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.
- B: PROFFERED PERMIT: You may accept or appeal the permit
- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final
 authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your
 signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights
 to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you
 may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this
 form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the
 date of this notice.
- C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.
- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.
- E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

PRELIMINARY JURISDICTIONAL DETERMINATION FORM

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): January 28, 2014

B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD:

Ms. Megan Landfried EQT Production Company 115 Professional Place Bridgeport, West Virginia 26330

C. DISTRICT OFFICE, FILE NAME, AND NUMBER:

LRH-2013-01017-OHR-Bluestone Creek, EQT Production Company Well Site WEU 51

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:

State: West Virginia

County: Doddridge County

City: Blandville

Coordinates of site: 39.25537°North, 80.762724°West

Name of nearest waterbody: Bluestone Creek

Identify (estimate) amount of waters in the review area:

Non-wetland waters: 6,165.2 linear feet

Cowardin Class: Riverine

Stream Flow: Perennial, Intermittent, and Ephemeral

Wetlands: None

Cowardin Class: Not applicable

Name of any water bodies on the site that have been identified as Section 10 waters:

None.

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date: January 21, 2014

☑ Field Determination. Date(s): November 8, 2013

1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.

December, 2013.	WV-New Milton 24K Quad. 1 Service Soil Survey. Web Soil Survey, accessed			
National wetlands inventory map(s). USACE ORM NWI dataset, accessed Dec., 2013. State/Local wetland inventory map(s):				
FEMA/FIRM maps:				
100-year Floodplain Elevation is: (National Geodectic Vertical Datum of 1929)				
☑ Photographs: ☑ Aerial (Name & Date): Google and bing maps, accessed Dec., 2013.				
or Other (Name & Date): in the report referenced above.				
Previous determination(s). File no. and date of response letter: Other information (please specify):				
— outer mormation (piease specify).	,			
IMPORTANT NOTE: The information recorded on this form has not necessarily been				
verified by the Corps and should not be relied upon for later jurisdictional determinations.				
Signature and date of 28 January 2014 Regulatory Project Manager (REQUIRED)	Signature and date of person requesting preliminary JD (REQUIRED, unless obtaining the signature is impracticable)			

Culvert/Rip-Rap- Access **UNT 6B** .0023 **Ephemeral** 42.5 42 **Road Construction** Culvert/Rip-Rap- Access **UNT 25 Ephemeral** 585.4 93 0.0030 **Road Construction** Culvert/Rip-Rap- Access 0.0019 **UNT 26 Ephemeral** 160.3 83 **Road Construction** Culvert/Rip-Rap- Access **UNT 30 Ephemeral** 313.62 237 0.0027 **Road Construction** Culvert/Rip-Rap- Access **UNT 33** Intermittent 129.0 82 0.0026 **Road Construction** Culvert/Rip-Rap- Access **UNT 26A Ephemeral** 1,071.6 189 0.0174 **Road Construction** Permanent Fill- Access **UNT 27A Ephemeral** 79 0.0032 146.0 **Road Construction** Culvert/Rip-Rap- Access **UNT 28A Ephemeral** 164.4 0.0045 143 **Road Construction** Permanent Fill- Access **UNTIIB Ephemeral** 90.2 0.0046 87 **Road Construction**

Table 2 - On-site wetlands associated with the construction of the EQT Production Company Well Site WEU 51. LRH-2013-01017-OHR- Bluestone Creek

Wetland Name	Classification	Area in LOD (acres)	Fill Area of Wetland (acres)	Regulated Discharge of Fill Activity
Wetland 2	РЕМ	0.014	0.001	Culvert/Rip-Rap- Access Road Construction

Permit Number:

LRH-2013-01017-OHR-Bluestone Creek

EQT Production Company Well Site WEU 51 Access Road

Name of Permittee: EQT Production Company

Date of Issuance:

January 28, 2014

Upon completion of the activity authorized by this permit and any mitigation required by the permit, sign this certification and return it to the following address:

> **Huntington District** U. S. Army Corps of Engineers 502 8th Street Huntington, West Virginia 25701-2070 Attn: CELRH-RD-E

Please note that your permitted activity is subject to a compliance inspection by an U. S. Army Corps of Engineers representative. If you fail to comply with this permit you are subject to permit suspension, modification, or revocation.

I hereby certify that the work authorized by the above referenced permit has been completed in accordance with the terms and conditions of the said permit, and required mitigation was completed in accordance with the permit conditions.

Signature	of Permittee	Date

PM: A. Richter

DEPARTMENT OF THE ARMY

HUNTINGTON DISTRICT, CORPS OF ENGINEERS 502 EIGHTH STREET HUNTINGTON, WEST VIRGINIA 25701-2070

FEB **03** 2015

Regulatory Division
Energy Resource Branch
LRH-2014-00214-OHR-Bluestone Creek

Ms. Megan Landfried EQT Production Company 115 Professional Place Bridgeport, West Virginia 26330

Dear Ms. Landfried:

I refer to the Pre-Construction Notification (PCN) requesting a Department of the Army (DA) authorization to discharge dredged and/or fill material into waters of the United States (U.S.) in association with the construction of the Well Site OXF 157 Access Road Project. The proposed Well Site OXF 157 Access Road Project will include upgrading approximately 1.16 miles (6,122.7 linear feet [lf]) of an existing dirt access road and constructing approximately 0.47 mile (2.503.3 lf) of new access road. The proposed access road will facilitate heavy equipment and large truck traffic required as part to normal drilling operations. On-site waters flow into Bluestone Creek, a tributary Middle Island Creek, a traditional navigable water (TNW) of the U.S. The proposed project would be located approximately 4.7 aerial miles south of West Union, in Doddridge County, West Virginia. The center of the proposed project is located at 39.234468°North, 80.764983°West. The PCN has been assigned the following file number: LRH-2014-00214-OHR-Bluestone Creek. Please reference this number on all future correspondence related to this project.

The U.S. Army Corps of Engineers (Corps) authority to regulate waters of the U.S. is based on the definitions and limits of jurisdiction contained in 33 CFR 328 and 33 CFR 329. Section 404 of the Clean Water Act (Section 404) requires a DA permit be obtained prior to discharging dredged or fill material into waters of the U.S., including wetlands. Section 10 of the Rivers and Harbors Act of 1899 (Section 10) requires a DA permit be obtained for any work in, on, over or under a navigable water.

Based on a review of the aquatic resources in the PCN, fifteen (15) streams (Bluestone Creek and Unnamed tributaries 1, 2, 5, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, and 24), totaling 1061.87 If are included in the preliminary jurisdictional determination (PJD), as described in the enclosed PJD form. The on-site aquatic resource may be waters of the U.S. in accordance with the Regulatory Guidance Letter for Jurisdictional Determinations (JDs) issued by the Corps on June 26, 2008 (Regulatory Guidance Letter No. 08-02). As indicated in the guidance, this PJD is non-binding and cannot be appealed (33 CFR 331.2) and only provides a written indication that waters of the U.S. may be present on-site.

You have declined to exercise the option to obtain an approved JD in this instance and at this time. However, for the purposes of the determination of impacts, compensatory mitigation, and other resource protection measures for activities that require authorization from this office, the streams referenced above will be evaluated as if is they are waters of the U.S.

Enclosed please find two (2) copies of the PJD form. If you agree with the findings of this PJD and understand your options regarding the same, please sign and date one copy of the PJD form and return it to this office within 30 days of receipt of this letter. You should submit the signed copy via email to Audrey.M.Richter@usace.army.mil or to the following address:

U.S. Army Corps of Engineers
Huntington District, Regulatory Division
Energy Resource Branch
Attn: Audrey Richter (LRH-2014-00214)
502 Eighth Street
Huntington, West Virginia 25701.

The proposed project, as described in the submitted information, has been reviewed in accordance with Section 404 and Section 10. Based on your description of the proposed work, and other information available to us, it has been determined that this project will not involve activities subject to the requirements of Section 10. However, this project will include the discharge of dredged or fill material into waters of the U.S. subject to the requirements of Section 404.

In the PCN received in this office, you have requested a DA authorization to discharge dredged and/or fill material into 1061.87 lf of stream, involving twelve (12) single and complete projects, associated with the construction of the proposed Well Site OXF 157 Access Road Project, as described in Table 1 enclosed with this letter. To avoid and minimize impacts the Bluestone Creek (perennial stream), project construction will include the use of temporary bridges, at four (4) separate and distant stream crossings. The proposed temporary bridges will be constructed above the ordinary high waters mark (OHW) of Bluestone Creek and will not include a discharge of dredged and/or fill material into waters of the U.S. Upon completion of the well/drilling operations, the temporary bridges will be removed and permanent forded stream crossings will be installed at three (3) separate and distant locations in Bluestone Creek. Bluestone Creek Stream Crossing A will not require a permanent ford crossing. The proposed discharge of dredged and/or fill material into waters of the U.S. is described in Table 1 enclosed with this letter.

Based on your description of the proposed work, it has been determined the proposed discharge of dredged and/or fill material into waters of the U.S., as described on Table 1 enclosed with this letter, for the construction of the Well Site OXF 157 Access Road Project, meets the criteria for authorization under Nationwide Permit (NWP) #14 (enclosed) under the February 21, 2012 Federal Register, Notice of Reissuance of NWPs (77 FR 10184) provided you comply with all terms and conditions of the enclosed material. A copy of this NWP can be found on our website at http://www.lrh.usace.army.mil/Missions/Regulatory.aspx. Please note that you

must comply with all applicable terms and conditions of the enclosed material and the attached special conditions for the authorizations to be valid.

In view of the above, your linear transportation project is authorized subject to the terms and conditions of the enclosed material, including the enclosed special conditions. It is your responsibility to ensure that your work conforms to all of the environmental management conditions listed within the enclosed material. Please be aware this NWP verification does not obviate the requirement to obtain any state or local assent required by law for the activities.

A copy of this NWP and verification letter must be supplied to your project engineer responsible for construction activities. A copy of the verification letter must be kept at the site during construction. Upon completion of the work, the enclosed certification must be signed and returned to this office. If you have any questions concerning the above, please contact Ms. Audrey Richter at (304) 399-5257 or by email at Audrey.M.Richter@usace.army.mil.

Sincerely,

Teresa Spagna

Acting Chief, North Branch

Enclosures

CF: (w/out encls)

Ms. Beth Burdette
Potesta & Associates, Inc.
7012 MacCorkle Ave SE
Charleston, West Virginia 25304
sbburdette@potesta.com

Nationwide Permit 14 Verification Special Conditions EQT Production Company Well Site OXF 157 Access Road Project LRH-2014-00214-OHR- Bluestone Creek Page 1 of 1

- 1. Should new information regarding the scope and/or impacts of the project become available that was not submitted to this office during our review of the proposal, the permittee will submit written information concerning proposed modification(s) to this office for review and evaluation, as soon as practicable.
- 2. Section 7 obligations under Endangered Species Act must be reconsidered if new information reveals impacts of the project that may affect federally listed species or critical habitat in a manner not previously considered, the proposed project is subsequently modified to include activities which were not considered during Section 7 consultation with the United States Fish and Wildlife Service, or new species are listed or critical habitat designated that might be affected by the subject project.

Table 1- Authorized discharge of dredged and/or fill material into waters of the U.S. associated with the construction of the Well Site OXF 157 Access Road Project, LRH-2014-00214-OHR- Bluestone Creek

Water ID	Latitude &	Longitude W	Flow Regime or Cowardin Class	Length (lf) or area (acre) of Fill	Area (ac) of Fill	Other Pertinent Information
Bluestone Creek Crossing B	39.234301	80.764888	Perennial	50	0.0077	Temporary Bridge Outside of OHW/Permanent Ford
Bluestone Creek Crossing C	39.232888	80.763930	Perennial	46	0.0071	Temporary Bridge Outside of OHW/Permanent Ford
Bluestone Creek Crossing D	39.230725	80.763568	Perennial	42	0.0065	Temporary Bridge Outside of OHW/Permanent Ford
UNT I	39.227652	80.762575	Ephemeral	72.03	0.0020	Existing Culvert- Maintenance/Upgrade/ Riprap Installation
UNT 2	39.228532	80.762594	Intermittent	71.17	0.0059	Existing Culvert- Maintenance/Upgrade/ Riprap Installation
UNT 5	39.230725	80.763568	Ephemeral	110.95	0.0025	Existing Culvert- Maintenance/Upgrade/ Riprap Installation
UNT 12	39.224992	80.763361	Ephemeral	55.00	0.0020	Existing Culvert- Maintenance/Upgrade/ Riprap Installation
UNT 22	39.225063	80.763202	Ephemeral	38.00	0.0022	Access Road- Culvert/riprap installation
UNT 14	39.225468	80.763392	Ephemeral	236.52	0.0065	Existing Culvert- Maintenance/Upgrade/ Riprap Installation
UNT 15	39.225907	80.763333	Ephemeral	32.32	0.0012	Access Road- Culvert/riprap installation
UNT 17	39.227583	80.75968	Ephemeral	25	0.0003	Access Road- Fill placement and riprap installation
UNT 18	39.227725	80.759565	Ephemeral	25	0.0011	Access Road- Fill placement and riprap installation
UNT 19	39.226892	80.760484	Ephemeral	71.38	0.0008	Access Road- Fill- Slope

Table 1- Authorized discharge of dredged and/or fill material into waters of the U.S. associated with the construction of the Well Site OXF 157 Access Road Project, LRH-2014-00214-OHR- Bluestone Creek

UNT 20	39.226798	80.760672	Ephemeral	50.00	0.0034	Access Road- Fill- Slope
UNT 21	39.226383	80.761519	Ephemeral	17.21	0.008	Access Road- Fill- Slope
UNT 23	39.226129	80.763203	Ephemeral	73.67	0.0020	Existing Culvert- Maintenance/Upgrade/ Riprap Installation
UNT 24	39.225183	80.763296	Ephemeral	45.62	0.0010	Access Road- Fill- Slope

Permit Number:

LRH-2014-00214-OHR- Bluestone Creek

Well Site OXF 157 Access Road

Name of Permittee:

EQT Production Company

Date of Issuance:

February 3, 2015

Upon completion of the activity authorized by this permit and any mitigation required by the permit, sign this certification and return it to the following address:

Huntington District
U. S. Army Corps of Engineers
502 8th Street
Huntington, West Virginia 25701-2070
Attn: CELRH-RD-E

Please note that your permitted activity is subject to a compliance inspection by an U. S. Army Corps of Engineers representative. If you fail to comply with this permit you are subject to permit suspension, modification, or revocation.

I hereby certify that the work authorized by the above referenced permit has been completed in accordance with the terms and conditions of the said permit, and required mitigation was completed in accordance with the permit conditions.

Signature of Permittee Date

PM: A. Richter

PRELIMINARY JURISDICTIONAL DETERMINATION FORM

BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR PRELIMINARY JURISDICTIONAL DETERMINATION (JD): February 3, 2015

B. NAME AND ADDRESS OF PERSON REQUESTING PRELIMINARY JD:

Ms. Megan Landfried EQT Production Company 115 Professional Place Bridgeport, West Virginia 26330

C. DISTRICT OFFICE, FILE NAME, AND NUMBER:

LRH-2014-00214-OHR-Bluestone Creek, EQT Production Company- Well Site OXF 157 Access Road Project

D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:

State: West Virginia

County: Doddridge County

City: West Union

Coordinates of site: 39.234468°North, 80.764983°West

Name of nearest waterbody: Bluestone Creek

Identify (estimate) amount of waters in the review area:

Non-wetland waters: 1061.87 linear feet

Cowardin Class: Riverine

Stream Flow: Ephemeral, Intermittent, and Perennial

Wetlands: Not applicable Cowardin Class: Not applicable

Name of any water bodies on the site that have been identified as Section 10 waters: None.

E.	REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
	Office (Desk) Determination. Date: February 2, 2015
	Field Determination. Date(s):

1. The Corps of Engineers believes that there may be jurisdictional waters of the United States on the subject site, and the permit applicant or other affected party who requested this preliminary JD is hereby advised of his or her option to request and obtain an approved jurisdictional determination (JD) for that site. Nevertheless, the permit applicant or other person who requested this preliminary JD has declined to exercise the option to obtain an approved JD in this instance and at this time.

2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre-construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an approved JD for the activity, the permit applicant is hereby made aware of the following: (1) the permit applicant has elected to seek a permit authorization based on a preliminary JD, which does not make an official determination of jurisdictional waters; (2) that the applicant has the option to request an approved JD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an approved JD could possibly result in less compensatory mitigation being required or different special conditions; (3) that the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) that the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) that undertaking any activity in reliance upon the subject permit authorization without requesting an approved JD constitutes the applicant's acceptance of the use of the preliminary JD, but that either form of JD will be processed as soon as is practicable; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a preliminary JD constitutes agreement that all wetlands and other water bodies on the site affected in any way by that activity are jurisdictional waters of the United States, and precludes any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an approved JD or a preliminary JD, that JD will be processed as soon as is practicable. Further, an approved JD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331, and that in any administrative appeal, jurisdictional issues can be raised (see 33 C.F.R. 331.5(a)(2)). If, during that administrative appeal, it becomes necessary to make an official determination whether CWA jurisdiction exists over a site, or to provide an official delineation of jurisdictional waters on the site, the Corps will provide an approved JD to accomplish that result, as soon as is practicable.

This preliminary JD finds that there "may be" waters of the United States on the subject project site, and identifies all aquatic features on the site that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for preliminary JD (check all that apply - checked
items should be included in case file and, where checked and requested, appropriately
reference sources below):
Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: In repor
entitled: "Nationwide Permit 14 for Linear Transportation Projects, EQT Production
Company, Well Site OXF 157, Doddridge County, West Virginia"
☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.
Office concurs with data sheets/delineation report.
Office does not concur with data sheets/delineation report.
☐ Data sheets prepared by the Corps:
Corps navigable waters' study:

✓ National wetlands inventory map(s)✓ State/Local wetland inventory map(✓ FEMA/FIRM maps:	If USGS NHD dataset S. GS WV-Oxford 24K Quad. Stion Service Soil Survey. Web Soil Survey. S. USACE ORM NWI dataset S): National Geodectic Vertical Datum of 1929)
	ate): in the report referenced above.
IMPORTANT NOTE: The information	recorded on this form has not necessarily been relied upon for later jurisdictional determinations.
Signature and date of Regulatory Project Manager (REQUIRED)	Signature and date of person requesting preliminary JD (REQUIRED, unless obtaining the signature is impracticable)

Table 1 – On-site Aquatic Resources associated with the construction of EQT Production Company- Well Site OXF 157 Access Road Project, LRH-2014-00214-OHR-Bluestone Creek

Waters ID	Latitude (°N)	Longitude (°W)	Flow Regime	Length (lf) of Stream within the AOI	Class of aquatic resource
Bluestone Creek	39.230725	-80.763568	Perennial	150.00	non-section 10 – non- wetland
UNT 1	39.227652	-80.762575	Ephemeral	72.03	non-section 10 – non- wetland
UNT 2	39.228532	80.762594	Ephemeral	71.17	non-section 10 – non- wetland
UNT 5	39.230725	80.763568	Ephemeral	110.95	non-section 10 – non- wetland
UNT 12	39.224992	80.763361	Ephemeral	55.00	non-section 10 – wetland
UNT 22	39.225063	80.763202	Ephemeral	38.00	non-section 10 – non- wetland
UNT 14	39.225468	80.763392	Ephemeral	236.52	non-section 10 – non- wetland
UNT 15	39.225907	80.763333	Ephemeral	32.32	non-section 10 – non- wetland
UNT 17	39.227583	80.75968	Ephemeral	25.00	non-section 10 – non- wetland
UNT 18	39.227725	80.759565	Ephemeral	25.00	non-section 10 – non- wetland
UNT 19	39.226892	80.760484	Ephemeral	71.38	non-section 10 – non- wetland

UNT 20	39.226798	80.760672	Ephemeral	50.00	non-section 10 – non- wetland
UNT 21	39.226383	80.761519	Ephemeral	17.21	non-section 10 – non- wetland
UNT 23	39.226129	80.763203	Ephemeral	73.67	non-section 10 – non- wetland
UNT 24	39.225183	80.763296	Ephemeral	45.62	non-section 10 – non- wetland

Issuance Date: March 19, 2012 Expiration Date: March 18, 2017

NWP # 14

NATIONWIDE PERMITS FOR THE STATE OF WEST VIRGINIA

CORPS OF ENGINEERS REGULATORY PROGRAM ISSUANCE OF NATIONWIDE PERMITS

On February 21, 2012, the Corps of Engineers published, in the Federal Register, the final rule for the administration of its nationwide permit program regulations under the Rivers and Harbors Act of 1899, Section 404 of the Clean Water Act, and the Marine Protection, Research and Sanctuaries Act. The rule became effective on March 19, 2012.

An integral part of the Corps' regulatory program is the concept of nationwide permits (NWPs) for minor activities. NWPs are activity specific, and are designed to relieve some of the administrative burdens associated with permit processing for both the applicant and the Federal government. The NWPs, published in the February 21, 2012, Federal Register, Issuance of Nationwide Permits (77 FR 10184), are issued by the Chief of Engineers, and are intended to apply throughout the entire United States and its territories. The Corps Districts representing West Virginia have imposed regional conditions on the NWPs that are applicable throughout the entire state. For convenience, all NWPs with the appropriate regional, general and special conditions are attached.

In response to the Federal Register Notice (77 FR 10184), the West Virginia Department of Environmental Protection (WVDEP) has issued 401 water quality certification, pending compliance with certain conditions and/or limitations, for the following NWPs: 3, 4, 5, 6, 7, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 27, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50 and 51.

An individual State Water Quality Certification is required for the following NWPs: 15, 17, 23, 34 and 43. Certification response is not applicable to NWPs: 1, 2, 8, 9, 10, 11, 24, 26, 28, 35, 44, 47, and 52.

Authorization for discharges covered by NWPs is denied without prejudice if: (1) the State Certification has been denied; or (2) the discharge is not in compliance with conditions imposed in the State Certification. Applicants wishing to conduct such discharges must first obtain either an individual water quality certificate or waiver from:

Director
West Virginia Department of Environmental Protection
601 57th Street
Charleston, West Virginia 25304

Some NWPs require advance notification. The notification must be made in writing as early as possible prior to commencing the proposed activity. The notification procedures are located under General Condition 31. The notification to the Corps can be made concurrently with the request for individual state certification, if required. The District Engineer may require an individual permit for any activity determined to have more than minimal adverse environmental effects, individually or cumulatively, or would be contrary to the public interest.

The NWPs provide a simplified, expeditious means of project authorization under various authorities of the Corps. We encourage prospective permit applicants to consider the advantages of nationwide permit authorization during the preliminary design of their projects. Assistance and further information regarding all aspects of the Corps regulatory program may be obtained by contacting:

HUNTINGTON DISTRICT

Name:

Ginger Mullins, Chief, Regulatory Division

Address:

U.S. Army Corps of Engineers, Huntington District

502 Eighth Street

Huntington, West Virginia 25701-2070

Phone: 304-3

304-399-5710

PITTSBURGH DISTRICT

Name:

Scott Hans, Chief Regulatory Branch

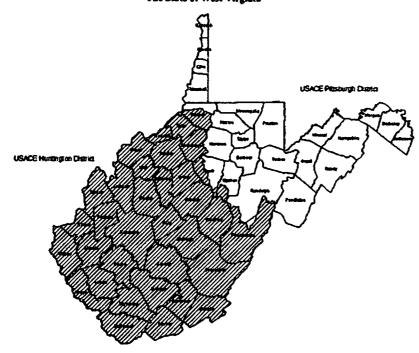
Address:

U.S. Army Corps of Engineers, Pittsburgh District

William S. Moorhead Federal Building

1000 Liberty Avenue

Pittsburgh, Pennsylvania 15222-4186


Phone:

412-395-7154

Attached is a map showing the district boundaries for the State of West Virginia.

Ginger Mullins, Chief Regulatory Division

Corps Districts and Navigable Streams in The State of West Virginia

Иu	nti	neton	Di	etel	~

I.	Ohio RiverTo	otal Length in State
	Kanawha River	
3,	New RiverT	otal Length in State
	Big Sandy River	
	Tug Fork	
	Elk River	
7.	Gauley River	75 Miles
8.	Guyandotte River	122 Mile
9.	Little Kanawha River	130.75 Miles
	Greenbrier River	
11	Coal River	\$7.00 Miles

	Stranger bitter	<u>et</u>
1.	Ohio River	Total Length in State
		Total Length in State
		7 Miles
		74 Mites
		Total Length in State
		Total Length in State

A. U.S. Army Corps of Engineers Nationwide Permit #14 for Linear Transportation Projects in West Virginia

Activities required for the construction, expansion, modification, or improvement of linear transportation projects (e.g., roads, highways, railways, trails, airport runways, and taxiways) in waters of the United States. For linear transportation projects in non-tidal waters, the discharge cannot cause the loss of greater than 1/2-acre of waters of the United States. For linear transportation projects in tidal waters, the discharge cannot cause the loss of greater than 1/3-acre of waters of the United States. Any stream channel modification, including bank stabilization, is limited to the minimum necessary to construct or protect the linear transportation project; such modifications must be in the immediate vicinity of the project.

This NWP also authorizes temporary structures, fills, and work necessary to construct the linear transportation project. Appropriate measures must be taken to maintain normal downstream flows and minimize flooding to the maximum extent practicable, when temporary structures, work, and discharges, including cofferdams, are necessary for construction activities, access fills, or dewatering of construction sites. Temporary fills must consist of materials, and be placed in a manner, that will not be eroded by expected high flows. Temporary fills must be removed in their entirety and the affected areas returned to pre-construction elevations. The areas affected by temporary fills must be revegetated, as appropriate.

This NWP cannot be used to authorize non-linear features commonly associated with transportation projects, such as vehicle maintenance or storage buildings, parking lots, train stations, or aircraft hangars.

Notification: The permittee must submit a pre-construction notification to the district engineer prior to commencing the activity if: (1) the loss of waters of the United States exceeds 1/10-acre; or (2) there is a discharge in a special aquatic site, including wetlands. (See general condition 31.) (Sections 10 and 404)

Note: Some discharges for the construction of farm roads or forest roads, or temporary roads for moving mining equipment, may qualify for an exemption under Section 404(f) of the Clean Water Act (see 33 CFR 323.4).

B. Specific Regional Conditions for Nationwide Permit #14:

- Notification is required for all activities in Section 10 streams.
- · Notification is required for discharges causing the loss of greater than 100 feet of perennial, intermittent, and ephemeral stream.
- Notification is required for all vented (culverted) low water crossings.
- All activities shall be constructed in a manner to withstand expected bankfull events and shall consist of clean and coarse non-erodable materials with 15% or less of like fines
- · Compensatory mitigation will be required for discharges causing the loss of greater than 1/10 acre of wetlands. In addition, compensatory mitigation will be required for the loss of greater than 300 linear feet of perennial, intermittent, and ephemeral streams unless the applicant demonstrates that adverse effects of the project are minimal without mitigation. In such cases, the applicant may submit

for the DE's consideration justification explaining why compensatory mitigation should not be required.

C. West Virginia 401 Water Quality Certification Special Conditions for Nationwide Permit #14:

For activities involving a discharge, the West Virginia 401 Water Quality Certification Standard Conditions apply.

- A. Individual State Water Quality Certification is required for perennial and intermittent stream impacts greater than 300 linear feet.
- B. Activities associated with temporary access fills, temporary cofferdams or other discharges related to accessing the stream for maintenance activities require the use of clean and coarse non erodible materials with 15% or less of like fines that is properly sized to withstand expected high flows.
- C. Pipe, box, and arched culvert crossings:
 - The volume of fill for culverted structures is limited to the amount required to achieve transportation purpose.
 - b. The inlet/outlets must be designed in such a manner as to maintain substrate in the bottom of the culvert (culverts installed in bedrock streams do not need to be countersunk). Countersinking the culvert to the sub-pavement of the streambed, backwatering or the use of a bottomless culvert will generally fulfill this requirement.
 - c. If fills associated with the crossing extend onto the floodplain the use of floodplain culverts is strongly encouraged.
- D. The volume of fill for a bridge abutment or piers below the ordinary high water mark is not to exceed 200 cubic yards for a single bridge project.
- E. Individual State Water Quality Certification is required for an activity impacting greater than 200 linear feet on one or more of the streams listed in West Virginia State Certification, Standard Condition 15.

D. U.S. Army Corps of Engineers Nationwide Permit General Conditions Applicable to ALL NWPs

Note: To qualify for NWP authorization, the prospective permittee must comply with the following general conditions, as applicable, in addition to any regional or case-specific conditions imposed by the division engineer or district engineer. Prospective permittees should contact the appropriate Corps district office to determine if regional conditions have been imposed on an NWP Prospective permittees should also contact the appropriate Corps district office to determine the status of Clean Water Act Section 401 water quality certification and/or

Coastal Zone Management Act consistency for an NWP. Every person who may wish to obtain permit authorization under one or more NWPs, or who is currently relying on an existing or prior permit authorization under one or more NWPs, has been and is on notice that all of the provisions of 33 CFR §§ 330.1 through 330.6 apply to every NWP authorization. Note especially 33 CFR § 330.5 relating to the modification, suspension, or revocation of any NWP authorization.

- Navigation. (a) No activity may cause more than a minimal adverse effect on navigation.
- (b) Any safety lights and signals prescribed by the U.S. Coast Guard, through regulations or otherwise, must be installed and maintained at the permittee's expense on authorized facilities in navigable waters of the United States.
- (c) The permittee understands and agrees that, if future operations by the United States require the removal, relocation, or other alteration, of the structure or work herein authorized, or if, in the opinion of the Secretary of the Army or his authorized representative, said structure or work shall cause unreasonable obstruction to the free navigation of the navigable waters, the permittee will be required, upon due notice from the Corps of Engineers, to remove, relocate, or after the structural work or obstructions caused thereby, without expense to the United States. No claim shall be made against the United States on account of any such removal or afteration.
- 2. Aquatic Life Movements. No activity may substantially disrupt the necessary life cycle movements of those species of aquatic life indigenous to the waterbody, including those species that normally migrate through the area, unless the activity's primary purpose is to impound water. All permanent and temporary crossings of waterbodies shall be suitably culverted, bridged, or otherwise designed and constructed to maintain low flows to sustain the movement of those aquatic species.
- 3. <u>Snawning Areas</u>. Activities in spawning areas during spawning seasons must be avoided to the maximum extent practicable. Activities that result in the physical destruction (e.g., through excavation, fill, or downstream smothering by substantial turbidity) of an important spawning area are not authorized.
- 4. <u>Migratory Bird Breeding Areas</u>. Activities in waters of the United States that serve as breeding areas for migratory birds must be avoided to the maximum extent practicable.
- 5. Shellfish Beds. No activity may occur in areas of concentrated shellfish populations, unless the activity is directly related to a shellfish harvesting activity authorized by NWPs 4 and 48, or is a shellfish seeding or habitat restoration activity authorized by NWP 27.
- 6. <u>Suitable Material</u>. No activity may use unsuitable material (e.g., trash, debris, car bodies, asphalt, etc.). Material used for construction or discharged must be free from toxic pollutants in toxic amounts (see Section 307 of the Clean Water Act).
- 7. Water Supply Intakes. No activity may occur in the proximity of a public water supply intake, except where the activity is for the repair or improvement of public water supply intake structures or adjacent bank stabilization.

- 8. Adverse Effects From Impoundments. If the activity creates an impoundment of water, adverse effects to the aquatic system due to accelerating the passage of water, and/or restricting its flow must be minimized to the maximum extent practicable.
- 9. Management of Water Flows. To the maximum extent practicable, the pre-construction course, condition, capacity, and location of open waters must be maintained for each activity, including stream channelization and storm water management activities, except as provided below. The activity must be constructed to withstand expected high flows. The activity must not restrict or impede the passage of normal or high flows, unless the primary purpose of the activity is to impound water or manage high flows. The activity may alter the pre-construction course, condition, capacity, and location of open waters if it benefits the aquatic environment (e.g., stream restoration or relocation activities).
- 10. Fills Within 100-Year Floodplains. The activity must comply with applicable FEMA-approved state or local floodplain management requirements.
- Equipment. Heavy equipment working in wetlands or mudflats must be placed on mats, or other measures must be taken to minimize soil disturbance.
- 12. Soll Erosion and Sediment Controls. Appropriate soil erosion and sediment controls must be used and maintained in effective operating condition during construction, and all exposed soil and other fills, as well as any work below the ordinary high water mark or high tide line, must be permanently stabilized at the earliest practicable date. Permittees are encouraged to perform work within waters of the United States during periods of low-flow or no-flow.
- 13. Removal of Temporary Fills. Temporary fills must be removed in their entirety and the affected areas returned to pre-construction elevations. The affected areas must be revegetated, as appropriate.
- 14. <u>Proper Maintenance</u>. Any authorized structure or fill shall be properly maintained, including maintenance to ensure public safety and compliance with applicable NWP general conditions, as well as any activity-specific conditions added by the district engineer to an NWP authorization.
- 15. Single and Complete Project. The activity must be a single and complete project. The same NWP cannot be used more than once for the same single and complete project.
- 16. Wild and Scenic Rivers. No activity may occur in a component of the National Wild and Scenic River System, or in a river officially designated by Congress as a "study river" for possible inclusion in the system while the river is in an official study status, unless the appropriate Federal agency with direct management responsibility for such river, has determined in writing that the proposed activity will not adversely affect the Wild and Scenic River designation or study status. Information on Wild and Scenic Rivers may be obtained from the appropriate Federal land management agency responsible for the designated Wild and Scenic

River of study river (e.g., National Park Service, U.S. Forest Service, Bureau of Land Management, U.S. Fish and Wildlife Service).

- 17. Tribal Rights. No activity or its operation may impair reserved tribal rights, including, but not limited to, reserved water rights and treaty fishing and hunting rights.
- 18. Endangered Species. (a) No activity is authorized under any NWP which is likely to directly or indirectly jeopardize the continued existence of a threatened or endangered species or a species proposed for such designation, as identified under the Federal Endangered Species Act (ESA), or which will directly or indirectly destroy or adversely modify the critical habitat of such species. No activity is authorized under any NWP which "may affect" a listed species or critical habitat, unless Section 7 consultation addressing the effects of the proposed activity has been completed.
- (b) Federal agencies should follow their own procedures for complying with the requirements of the ESA. Federal permittees must provide the district engineer with the appropriate documentation to demonstrate compliance with those requirements. The district engineer will review the documentation and determine whether it is sufficient to address ESA compliance for the NWP activity, or whether additional ESA consultation is necessary.
- (c) Non-federal permittees must submit a pre-construction notification to the district engineer if any listed species or designated critical habitat might be affected or is in the vicinity of the project, or if the project is located in designated critical habitat, and shall not begin work on the activity until notified by the district engineer that the requirements of the ESA have been satisfied and that the activity is authorized. For activities that might affect Federally-listed endangered or threatened species or designated critical habitat, the pre-construction notification must include the name(s) of the endangered or threatened species that might be affected by the proposed work or that utilize the designated critical habitat that might be affected by the proposed work. The district engineer will determine whether the proposed activity "may affect" or will have "no effect" to listed species and designated critical habitat and will notify the non-Federal applicant of the Corps' determination within 45 days of receipt of a complete preconstruction notification. In cases where the non-Federal applicant has identified listed species or critical habitat that might be affected or is in the vicinity of the project, and has so notified the Corps, the applicant shall not begin work until the Corps has provided notification the proposed activities will have "no effect" on listed species or critical habitat, or until Section 7 consultation has been completed. If the non-Federal applicant has not heard back from the Corps within 45 days, the applicant must still wait for notification from the Corps.
- (d) As a result of formal or informal consultation with the FWS or NMFS the district engineer may add species-specific regional endangered species conditions to the NWPs.
- (e) Authorization of an activity by a NWP does not authorize the "take" of a threatened or endangered species as defined under the ESA. In the absence of separate authorization (e.g., an ESA Section 10 Permit, a Biological Opinion with "incidental take" provisions, etc.) from the U.S. FWS or the NMFS, The Endangered Species Act prohibits any person subject to the jurisdiction of the United States to take a listed species, where "take" means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct. The word "harm" in the definition of "take" means an act which actually kills or injures wildlife. Such an act may include significant habitat modification or degradation where it

actually kills or injures wildlife by significantly impairing essential behavioral patterns, including breeding, feeding or sheltering.

- (f) Information on the location of threatened and endangered species and their critical habitat can be obtained directly from the offices of the U.S. FWS and NMFS or their world wide web pages at http://www.fws.gov/or http://www.fws.gov/ipac and http://www.noaa.gov/fisheries.html respectively.
- 19. Migratory Birds and Bald and Golden Eagles. The permittee is responsible for obtaining any "take" permits required under the U.S. Fish and Wildlife Service's regulations governing compliance with the Migratory Bird Treaty Act or the Bald and Golden Eagle Protection Act. The permittee should contact the appropriate local office of the U.S. Fish and Wildlife Service to determine if such "take" permits are required for a particular activity.
- 20. <u>Historic Properties</u>. (a) In cases where the district engineer determines that the activity may affect properties listed, or eligible for listing, in the National Register of Historic Places, the activity is not authorized, until the requirements of Section 106 of the National Historic Preservation Act (NHPA) have been satisfied.
- (b) Federal permittees should follow their own procedures for complying with the requirements of Section 106 of the National Historic Preservation Act. Federal permittees must provide the district engineer with the appropriate documentation to demonstrate compliance with those requirements. The district engineer will review the documentation and determine whether it is sufficient to address section 106 compliance for the NWP activity, or whether additional section 106 consultation is necessary
- (c) Non-federal permittees must submit a pre-construction notification to the district engineer if the authorized activity may have the potential to cause effects to any historic properties listed on, determined to be eligible for listing on, or potentially eligible for listing on the National Register of Historic Places, including previously unidentified properties. For such activities, the pre-construction notification must state which historic properties may be affected by the proposed work or include a vicinity map indicating the location of the historic properties or the potential for the presence of historic properties. Assistance regarding information on the location of or potential for the presence of historic resources can be sought from the State Historic Preservation Officer or Tribal Historic Preservation Officer, as appropriate, and the National Register of Historic Places (see 33 CFR 330.4(g)). When reviewing pre-construction notifications, district engineers will comply with the current procedures for addressing the requirements of Section 106 of the National Historic Preservation Act. The district engineer shall make a reasonable and good faith effort to carry out appropriate identification efforts, which may include background research, consultation, oral history interviews, sample field investigation, and field survey. Based on the information submitted and these efforts, the district engineer shall determine whether the proposed activity has the potential to cause an effect on the historic properties. Where the non-Federal applicant has identified historic properties on which the activity may have the potential to cause effects and so notified the Corps, the non-Federal applicant shall not begin the activity until notified by the district engineer either that the activity has no potential to cause effects or that consultation under Section 106 of the NHPA has been completed.
- (d) The district engineer will notify the prospective permittee within 45 days of receipt of a complete pre-construction notification whether NHPA Section 106 consultation is required.

- Section 106 consultation is not required when the Corps determines that the activity does not have the potential to cause effects on historic properties (see 36 CFR §800.3(a)). If NHPA section 106 consultation is required and will occur, the district engineer will notify the non-Federal applicant that he or she cannot begin work until Section 106 consultation is completed. If the non-Federal applicant has not heard back from the Corps within 45 days, the applicant must still wait for notification from the Corps.
- (e) Prospective permittees should be aware that section 110k of the NHPA (16 U.S.C. 470h-2(k)) prevents the Corps from granting a permit or other assistance to an applicant who, with intent to avoid the requirements of Section 106 of the NHPA, has intentionally significantly adversely affected a historic property to which the permit would relate, or having legal power to prevent it, allowed such significant adverse effect to occur, unless the Corps, after consultation with the Advisory Council on Historic Preservation (ACHP), determines that circumstances justify granting such assistance despite the adverse effect created or permitted by the applicant. If circumstances justify granting the assistance, the Corps is required to notify the ACHP and provide documentation specifying the circumstances, the degree of damage to the integrity of any historic properties affected, and proposed mitigation. This documentation must include any views obtained from the applicant, SHPO/THPO, appropriate Indian tribes if the undertaking occurs on or affects historic properties on tribal lands or affects properties of interest to those tribes, and other parties known to have a legitimate interest in the impacts to the permitted activity on historic properties.
- 21. <u>Discovery of Previously Unknown Remains and Artifacts</u>. If you discover any previously unknown historic, cultural or archeological remains and artifacts while accomplishing the activity authorized by this permit, you must immediately notify the district engineer of what you have found, and to the maximum extent practicable, avoid construction activities that may affect the remains and artifacts until the required coordination has been completed. The district engineer will initiate the Federal, Tribal and state coordination required to determine if the items or remains warrant a recovery effort or if the site is eligible for listing in the National Register of Historic Places.
- 22. <u>Designated Critical Resource Waters</u>. Critical resource waters include, NOAA-managed marine sanctuaries and marine monuments, and National Estuarine Research Reserves. The district engineer may designate, after notice and opportunity for public comment, additional waters officially designated by a state as having particular environmental or ecological significance, such as outstanding national resource waters or state natural heritage sites. The district engineer may also designate additional critical resource waters after notice and opportunity for public comment.
- (a) Discharges of dredged or fill material into waters of the United States are not authorized by NWPs 7, 12, 14, 16, 17, 21, 29, 31, 35, 39, 40, 42, 43, 44, 49, 50, 51, and 52 for any activity within, or directly affecting, critical resource waters, including wetlands adjacent to such waters.
- (b) For NWPs 3, 8, 10, 13, 15, 18, 19, 22, 23, 25, 27, 28, 30, 33, 34, 36, 37, and 38, notification is required in accordance with general condition 31, for any activity proposed in the designated critical resource waters including wetlands adjacent to those waters. The district engineer may authorize activities under these NWPs only after it is determined that the impacts to the critical resource waters will be no more than minimal.

- 23. <u>Mitigation</u>. The district engineer will consider the following factors when determining appropriate and practicable mitigation necessary to ensure that adverse effects on the aquatic environment are minimal:
- (a) The activity must be designed and constructed to avoid and minimize adverse effects, both temporary and permanent, to waters of the United States to the maximum extent practicable at the project site (i.e., on site).
- (b) Mitigation in all its forms (avoiding, minimizing, rectifying, reducing, or compensating for resource losses) will be required to the extent necessary to ensure that the adverse effects to the aquatic environment are minimal.
- (c) Compensatory mitigation at a minimum one-for-one ratio will be required for all wetland losses that exceed 1/10-acre and require pre-construction notification, unless the district engineer determines in writing that either some other form of mitigation would be more environmentally appropriate or the adverse effects of the proposed activity are minimal, and provides a project-specific waiver of this requirement. For wetland losses of 1/10-acre or less that require pre-construction notification, the district engineer may determine on a case-by-case basis that compensatory mitigation is required to ensure that the activity results in minimal adverse effects on the aquatic environment. Compensatory mitigation projects provided to offset losses of aquatic resources must comply with the applicable provisions of 33 CFR part 332.
- (1) The prospective permittee is responsible for proposing an appropriate compensatory mitigation option if compensatory mitigation is necessary to ensure that the activity results in minimal adverse effects on the aquatic environment.
- (2) Since the likelihood of success is greater and the impacts to potentially valuable uplands are reduced, wetland restoration should be the first compensatory mitigation option considered.
- (3) If permittee-responsible mitigation is the proposed option, the prospective permittee is responsible for submitting a mitigation plan. A conceptual or detailed mitigation plan may be used by the district engineer to make the decision on the NWP verification request, but a final mitigation plan that addresses the applicable requirements of 33 CFR 332.4(c)(2) (14) must be approved by the district engineer before the permittee begins work in waters of the United States, unless the district engineer determines that prior approval of the final mitigation plan is not practicable or not necessary to ensure timely completion of the required compensatory mitigation (see 33 CFR 332.3(k)(3)).
- (4) If mitigation bank or in-lieu fee program credits are the proposed option, the mitigation plan only needs to address the baseline conditions at the impact site and the number of credits to be provided.
- (5) Compensatory mitigation requirements (e.g., resource type and amount to be provided as compensatory mitigation, site protection, ecological performance standards, monitoring requirements) may be addressed through conditions added to the NWP authorization, instead of components of a compensatory mitigation plan.
- (d) For losses of streams or other open waters that require pre-construction notification, the district engineer may require compensatory mitigation, such as stream rehabilitation, enhancement, or preservation, to ensure that the activity results in minimal adverse effects on the aquatic environment.
- (e) Compensatory mitigation will not be used to increase the acreage losses allowed by the acreage limits of the NWPs. For example, if an NWP has an acreage limit of 1/2-acre, it

cannot be used to authorize any project resulting in the loss of greater than 1/2-acre of waters of the United States, even if compensatory mitigation is provided that replaces or restores some of the lost waters. However, compensatory mitigation can and should be used, as necessary, to ensure that a project already meeting the established acreage limits also satisfies the minimal impact requirement associated with the NWPs.

- (f) Compensatory mitigation plans for projects in or near streams or other open waters will normally include a requirement for the restoration or establishment, maintenance, and legal protection (e.g., conservation easements) of riparian areas next to open waters. In some cases, riparian areas may be the only compensatory mitigation required. Riparian areas should consist of native species. The width of the required riparian area will address documented water quality or aquatic habitat loss concerns. Normally, the riparian area will be 25 to 50 feet wide on each side of the stream, but the district engineer may require slightly wider riparian areas to address documented water quality or habitat loss concerns. If it is not possible to establish a riparian area on both sides of a stream, or if the waterbody is a lake or coastal waters, then restoring or establishing a riparian area along a single bank or shoreline may be sufficient. Where both wetlands and open waters exist on the project site, the district engineer will determine the appropriate compensatory mitigation (e.g., riparian areas and/or wetlands compensation) based on what is best for the aquatic environment on a watershed basis. In cases where riparian areas are determined to be the most appropriate form of compensatory mitigation, the district engineer may waive or reduce the requirement to provide wetland compensatory mitigation for wetland losses.
- (g) Permittees may propose the use of mitigation banks, in-lieu fee programs, or separate permittee-responsible mitigation. For activities resulting in the loss of marine or estuarine resources, permittee-responsible compensatory mitigation may be environmentally preferable if there are no mitigation banks or in-lieu fee programs in the area that have marine or estuarine credits available for sale or transfer to the permittee. For permittee-responsible mitigation, the special conditions of the NWP verification must clearly indicate the party or parties responsible for the implementation and performance of the compensatory mitigation project, and, if required, its long-term management.
- (h) Where certain functions and services of waters of the United States are permanently adversely affected, such as the conversion of a forested or scrub-shrub wetland to a herbaceous wetland in a permanently maintained utility line right-of-way, mitigation may be required to reduce the adverse effects of the project to the minimal level.
- 24. <u>Safety of Impoundment Structures</u>. To ensure that all impoundment structures are safely designed, the district engineer may require non-Federal applicants to demonstrate that the structures comply with established state dam safety criteria or have been designed by qualified persons. The district engineer may also require documentation that the design has been independently reviewed by similarly qualified persons, and appropriate modifications made to ensure safety.
- 25. Water Quality. Where States and authorized Tribes, or EPA where applicable, have not previously certified compliance of an NWP with CWA Section 401, individual 401 Water Quality Certification must be obtained or waived (see 33 CFR 330.4(c)). The district engineer or State or Tribe may require additional water quality management measures to ensure that the authorized activity does not result in more than minimal degradation of water quality.

- 26. Coastal Zone Management. In coastal states where an NWP has not previously received a state coastal zone management consistency concurrence, an individual state coastal zone management consistency concurrence must be obtained, or a presumption of concurrence must occur (see 33 CFR 330.4(d)). The district engineer or a State may require additional measures to ensure that the authorized activity is consistent with state coastal zone management requirements.
- 27. Regional and Case-By-Case Conditions. The activity must comply with any regional conditions that may have been added by the Division Engineer (see 33 CFR 330.4(e)) and with any case specific conditions added by the Corps or by the state, Indian Tribe, or U.S. EPA in its section 401 Water Quality Certification, or by the state in its Coastal Zone Management Act consistency determination.
- 28. Use of Multiple Nationwide Permits. The use of more than one NWP for a single and complete project is prohibited, except when the acreage loss of waters of the United States authorized by the NWPs does not exceed the acreage limit of the NWP with the highest specified acreage limit. For example, if a road crossing over tidal waters is constructed under NWP 14, with associated bank stabilization authorized by NWP 13, the maximum acreage loss of waters of the United States for the total project cannot exceed 1/3-acre.
- 29. Transfer of Nationwide Permit Verifications. If the permittee sells the property associated with a nationwide permit verification, the permittee may transfer the nationwide permit verification to the new owner by submitting a letter to the appropriate Corps district office to validate the transfer. A copy of the nationwide permit verification must be attached to the letter, and the letter must contain the following statement and signature:

"When the structures or work authorized by this nationwide permit are still in existence at the time the property is transferred, the terms and conditions of this nationwide permit, including any special conditions, will continue to be binding on the new owner(s) of the property. To validate the transfer of this nationwide permit and the associated liabilities associated with compliance with its terms and conditions, have the transferee sign and date below."

(Transferee)	 	
(Date)	 	

30. Compliance Certification. Each permittee who receives an NWP verification letter from the Corps must provide a signed certification documenting completion of the authorized activity and any required compensatory mitigation. The success of any required permittee-responsible mitigation, including the achievement of ecological performance standards, will be addressed separately by the district engineer. The Corps will provide the permittee the certification document with the NWP verification letter. The certification document will include:

- (a) A statement that the authorized work was done in accordance with the NWP authorization, including any general, regional, or activity-specific conditions;
- (b) A statement that the implementation of any required compensatory mitigation was completed in accordance with the permit conditions. If credits from a mitigation bank or in-lieu fee program are used to satisfy the compensatory mitigation requirements, the certification must include the documentation required by 33 CFR 332.3(1)(3) to confirm that the permittee secured the appropriate number and resource type of credits; and
 - (c) The signature of the permittee certifying the completion of the work and mitigation.
- 31. Pre-Construction Notification. (a) Timing. Where required by the terms of the NWP, the prospective permittee must notify the district engineer by submitting a pre-construction notification (PCN) as early as possible. The district engineer must determine if the PCN is complete within 30 calendar days of the date of receipt and, if the PCN is determined to be incomplete, notify the prospective permittee within that 30 day period to request the additional information necessary to make the PCN complete. The request must specify the information needed to make the PCN complete. As a general rule, district engineers will request additional information necessary to make the PCN complete only once. However, if the prospective permittee does not provide all of the requested information, then the district engineer will notify the prospective permittee that the PCN is still incomplete and the PCN review process will not commence until all of the requested information has been received by the district engineer. The prospective permittee shall not begin the activity until either.
- (1) He or she is notified in writing by the district engineer that the activity may proceed under the NWP with any special conditions imposed by the district or division engineer, or
- (2) 45 calendar days have passed from the district engineer's receipt of the complete PCN and the prospective permittee has not received written notice from the district or division engineer. However, if the permittee was required to notify the Corps pursuant to general condition 18 that listed species or critical habitat might be affected or in the vicinity of the project, or to notify the Corps pursuant to general condition 20 that the activity may have the potential to cause effects to historic properties, the permittee cannot begin the activity until receiving written notification from the Corps that there is "no effect" on listed species or "no potential to cause effects" on historic properties, or that any consultation required under Section 7 of the Endangered Species Act (see 33 CFR 330.4(f)) and/or Section 106 of the National Historic Preservation (see 33 CFR 330.4(g)) has been completed. Also, work cannot begin under NWPs 21, 49, or 50 until the permittee has received written approval from the Corps. If the proposed activity requires a written waiver to exceed specified limits of an NWP, the permittee may not begin the activity until the district engineer issues the waiver. If the district or division engineer notifies the permittee in writing that an individual permit is required within 45 calendar days of receipt of a complete PCN, the permittee cannot begin the activity until an individual permit has been obtained. Subsequently, the permittee's right to proceed under the NWP may be modified, suspended, or revoked only in accordance with the procedure set forth in 33 CFR 330.5(d)(2).
- (b) Contents of Pre-Construction Notification: The PCN must be in writing and include the following information:
 - (1) Name, address and telephone numbers of the prospective permittee;
 - (2) Location of the proposed project:

- (3) A description of the proposed project; the project's purpose; direct and indirect adverse environmental effects the project would cause, including the anticipated amount of loss of water of the United States expected to result from the NWP activity, in acres, linear feet, or other appropriate unit of measure; any other NWP(s), regional general permit(s), or individual permit(s) used or intended to be used to authorize any part of the proposed project or any related activity. The description should be sufficiently detailed to allow the district engineer to determine that the adverse effects of the project will be minimal and to determine the need for compensatory mitigation. Sketches should be provided when necessary to show that the activity complies with the terms of the NWP. (Sketches usually clarify the project and when provided results in a quicker decision. Sketches should contain sufficient detail to provide an illustrative description of the proposed activity (e.g., a conceptual plan), but do not need to be detailed engineering plans);
- (4) The PCN must include a delineation of wetlands, other special aquatic sites, and other waters, such as lakes and ponds, and perennial, intermittent, and ephemeral streams, on the project site. Wetland delineations must be prepared in accordance with the current method required by the Corps. The permittee may ask the Corps to delineate the special aquatic sites and other waters on the project site, but there may be a delay if the Corps does the delineation, especially if the project site is large or contains many waters of the United States. Furthermore, the 45 day period will not start until the delineation has been submitted to or completed by the Corps, as appropriate;
- (5) If the proposed activity will result in the loss of greater than 1/10-acre of wetlands and a PCN is required, the prospective permittee must submit a statement describing how the mitigation requirement will be satisfied, or explaining why the adverse effects are minimal and why compensatory mitigation should not be required. As an alternative, the prospective permittee may submit a conceptual or detailed mitigation plan.
- (6) If any listed species or designated critical habitat might be affected or is in the vicinity of the project, or if the project is located in designated critical habitat, for non-Federal applicants the PCN must include the name(s) of those endangered or threatened species that might be affected by the proposed work or utilize the designated critical habitat that may be affected by the proposed work. Federal applicants must provide documentation demonstrating compliance with the Endangered Species Act; and
- (7) For an activity that may affect a historic property listed on, determined to be eligible for listing on, or potentially eligible for listing on, the National Register of Historic Places, for non-Federal applicants the PCN must state which historic property may be affected by the proposed work or include a vicinity map indicating the location of the historic property. Federal applicants must provide documentation demonstrating compliance with Section 106 of the National Historic Preservation Act.
- (c) Form of Pre-Construction Notification: The standard individual permit application form (Form ENG 4345) may be used, but the completed application form must clearly indicate that it is a PCN and must include all of the information required in paragraphs (b)(1) through (7) of this general condition. A letter containing the required information may also be used.
- (d) Agency Coordination: (1) The district engineer will consider any comments from Federal and state agencies concerning the proposed activity's compliance with the terms and conditions of the NWPs and the need for mitigation to reduce the project's adverse environmental effects to a minimal level.

- (2) For all NWP activities that require pre-construction notification and result in the loss of greater than 1/2-acre of waters of the United States, for NWP 21, 29, 39, 40, 42, 43, 44, 50. 51, and 52 activities that require pre-construction notification and will result in the loss of greater than 300 linear feet of intermittent and ephemeral stream bed, and for all NWP 48 activities that require pre-construction notification, the district engineer will immediately provide (e.g., via email, facsimile transmission, overnight mail, or other expeditious manner) a copy of the complete PCN to the appropriate Federal or state offices (U.S. FWS, state natural resource or water quality agency, EPA. State Historic Preservation Officer (SHPO) or Tribal Historic Preservation Office (THPO), and, if appropriate, the NMFS). With the exception of NWP 37, these agencies will have 10 calendar days from the date the material is transmitted to telephone or fax the district engineer notice that they intend to provide substantive, site-specific comments. The comments must explain why the agency believes the adverse effects will be more than minimal. If so contacted by an agency, the district engineer will wait an additional 15 calendar days before making a decision on the pre-construction notification. The district engineer will fully consider agency comments received within the specified time frame concerning the proposed activity's compliance with the terms and conditions of the NWPs, including the need for mitigation to ensure the net adverse environmental effects to the aquatic environment of the proposed activity are minimal. The district engineer will provide no response to the resource agency, except as provided below. The district engineer will indicate in the administrative record associated with each pre-construction notification that the resource agencies' concerns were considered. For NWP 37, the emergency watershed protection and rehabilitation activity may proceed immediately in cases where there is an unacceptable hazard to life or a significant loss of property or economic hardship will occur. The district engineer will consider any comments received to decide whether the NWP 37 authorization should be modified, suspended, or revoked in accordance with the procedures at 33 CFR 330.5.
- (3) In cases of where the prospective permittee is not a Federal agency, the district engineer will provide a response to NMFS within 30 calendar days of receipt of any Essential Fish Habitat conservation recommendations, as required by Section 305(b)(4)(B) of the Magnuson-Stevens Fishery Conservation and Management Act.
- (4) Applicants are encouraged to provide the Corps with either electronic files or multiple copies of pre-construction notifications to expedite agency coordination.

E. Regional General Conditions

Regional General Condition 1

Full Agency Pre-construction Notification: In an effort to expedite full agency permit review it is requested that all pre-construction notifications (PCNs) submitted for activities requesting a waiver and for those activities resulting in the loss of greater than ½ acre of waters of the United States (U.S.), include one original hard copy and five (5) additional copies of the PCN package. Applicants are encouraged to submit the five agency copies in electronic format as CDs, in order to minimize the use of paper and postage resources.

Regional General Condition 2

Pre-Construction Notification Submittals: In addition to the PCN requirements listed in NWP General Condition 31, all PCNs should include the following information:

- Graphic illustrations on 8 1/2" x 11" paper. The illustrations must clearly depict the project boundaries, including all elements and phases of the proposed project. Three types of illustrations are needed to properly depict the work to be undertaken. These illustrations or drawings are identified as a Vicinity Map {a location map such as the U.S. Geological Survey (USGS) 7.5 Minute Series topographical map is highly encouraged), a Plan View and a Typical Cross-Section Map. Each illustration should identify the project, the applicant, and the type of illustration (vicinity map, plan view or cross-section). In addition, each illustration should be identified with a figure or attachment number and the project Latitude and Longitude.
- A written description of the proposed project including acreage(s) of waters of the U.S. (according to aquatic resource type) proposed to be directly or indirectly affected as a result of the proposed project, the linear footage of proposed direct and indirect stream impacts associated with the project, and cubic yards of fill proposed to be discharged.
- A description of the ways in which the project has been designed to avoid and minimize adverse impacts to waters of the U.S.
- Information concerning whether the proposed activity would affect any historic
 properties listed, determined to be eligible, or which they have reason to believe may be
 eligible, for listing on the National Register of Historic Places.
- Basic information about the general project area (encompassing a search radius of 2 miles centered on the project area) including USGS 7.5' series topographic maps, National Register of Historic Places (NRHP) files including Historic Districts, and county atlases, histories and/or any historic USGS 15' series topographic map(s), brief description of the terrain and topography of the project area, acreage of the project area, proximity of the project area to major waterways, past land uses in the project area, and any past cultural resources studies or coordination for the project area, if available, along with photographs, keyed to mapping, showing the project area and any buildings or structures on adjacent parcels.
- The submittal of ground photographs to illustrate current conditions of the overall project site and impact site is highly encouraged.

Regional General Condition 3

Compensatory Mitigation: Compensatory mitigation will typically be required as indicated in accordance the terms and conditions of the NWPs in addition to all General and Regional conditions for projects with impacts that result in the conversion of a water of the U.S. to uplands or the conversion of one aquatic resource type to another.

Regional General Condition 4

Passage of Aquatic Life: Culverted crossings should be sized in a manner that allow the passage of aquatic life and freely pass bankfull flows. The only exception to this requirement would involve culvert placement in bedrock and/or extremely high gradient streams, in which countersinking of culverts is determined not to be practicable. In the event proposed crossings do not meet these criteria, compensatory mitigation may be required.

Regional General Condition 5

Endangered Species: Federally listed endangered species, subject to Section 7 of the Endangered Species Act, are located in nearly every county within West Virginia. As part of the PCN process, the district engineer (DE) will assume responsibility for determining project-related effects to endangered species. For projects that do not require a PCN, it is the applicant's responsibility to ensure that all elements of a proposed single and complete project comply with Section 7 of the Endangered Species Act.

Regional General Condition 6

Endangered Species Habitar: Due to the potential presence of endangered species or their habitats applicants are required to provide notification to the U.S. Fish and Wildlife Service Elkins Field Office, 694 Beverly Pike, Elkins, West Virginia 26241, for any work in the waterways listed in Appendix A. This appendix will be update as new species are listed by the U.S. Fish and Wildlife Service.

Regional General Condition 7

All PCNs involving work in the below listed waters require notification to the National Park Service and/or the Forest Service.

- · New River:
- Bluestone River from the upstream boundary of Pipestern Park to Bluestone Reservoir:
- Meadow River from an area near the US 19 Bridge to its junction with the Gauley River;
- All streams within the Monongahela National Forest designated as National Wild and Scenic Study Rivers;
- All streams and other bodies of water in State and National Forests and Recreation Areas (included are streams and bodies of water located within the Spruce Knob, Seneca Rocks and Gauley River National Recreation Areas); and
- Streams and their tributaries as contained within the boundaries of the designated National Wilderness Areas or the headwaters of such rivers and their tributaries;
 Cranberry River, Red Creek, Laurel Fork and Otter Creek.

Regional General Condition 8

West Virginia Natural Stream Preservation Act: In accordance with the West Virginia Natural Stream Preservation Act, the following streams or rivers are protected from activities that would impound, divert or flood the body of water:

West Virginia Natural Stream Preservation Act

- Greenbrier River from its confluence with Knapps Creek to its confluence with the New River:
- Anthony Creek from its headwaters to its confluence with the Greenbrier River.
- Cranberry River from its headwaters to its confluence with the Gauley River.
- Birch River from Cora Brown Bridge in Nicholas County to its confluence with the Elk River; and
- New River from its confluence with the Greenbrier River to its confluence with the Gauley River.

Regional General Condition 9

Tier 3 Protected Waters: All PCNs involving work in Tier 3 Protected Waters (West Virginia Code of State Regulations, Requirements Governing Water Quality Standards, Title 47, Series 2) shall include prior written notification to the West Virginia Department of Environmental Protection, Division of Water and Waste Management. Tier 3 Protected Waters include, but are not limited to, all streams and rivers within the boundaries of Wilderness Areas designated by The Wilderness Act (16 U.S.C. §1131 et seq.) within the State, all Federally designated rivers under the "Wild and Scenic Rivers Act", 16 U.S.C. §1271 et seq.; all streams and other bodies of water in state parks which are high quality waters or naturally reproducing trout streams; waters in national parks and forests which are high quality waters or naturally reproducing trout streams; waters designated under the "National Parks and Recreation Act of 1978", as amended; and pursuant to subsection 7.1 of 60CSR5, those waters whose unique character, ecological or recreational value, or pristine nature constitutes a valuable national or state resource.

Regional General Condition 10

Archeological Sites and Human Remains: In the event any archeological sites or human remains are uncovered during construction, the permittee shall cease all work immediately and contact the appropriate Corps District office, the West Virginia Division of Culture and History at 304-558-0240 and the appropriate county Sheriff's Office.

F. West Virginia Department of Environmental Protection 401 Water Quality Certification Standard Conditions Applicable to ALL NWPs

The following are West Virginia's Section 401 Water Quality Certification standard and special conditions that apply to the Nationwide Permits 1-52 as published on February 21, 2012 in Part III of the Federal Register (77 FR 10184), by the U.S. Army Corps of Engineers. These conditions must be implemented into any activity authorized by a U.S. Army Corps of Engineers

Nationwide Permit(s). The State's certification of these Nationwide Permit activities does not replace the need for the applicant proposing an activity under the Nationwide Permit Program from obtaining other applicable permits/authorizations from the West Virginia Department of Environmental Protection and/or the Division of Natural Resources. Each permittee shall, if they do not understand or are not aware of applicable Nationwide Permit conditions, contact the Corps of Engineers prior to conducting any activity authorized by a Nationwide Permit in order to be advised of applicable conditions. These 401 Water Quality Certifications, with all attendant standard conditions and special conditions, are applicable to Corps of Engineers Civil Works Projects in West Virginia.

- The permittee will investigate for the presence of water supply intakes or other activities
 within 1/2 mile downstream, which may be affected by suspended solids and turbidity
 increases caused by work in the watercourse. The permittee will give notice to operators
 of any such water supply intakes and such other water quality dependent activities as
 necessary before beginning work in the watercourse in sufficient time to allow
 preparation for any change in water quality.
- Excavation, dredging or filling in the watercourse will be done only to the extent necessary to achieve the project's purpose.
- Spoil materials from the watercourse or onshore operations, including sludge deposits, will not be dumped in the watercourse, or deposited in wetlands or other areas where the deposit may adversely affect the surface or ground waters of the state.
- 4. The permittee will employ measures to prevent or control spills from fuels, lubricants or any other materials used in connection with construction and restrict them from entering the watercourse. Storage areas for chemicals, explosives, lubricants, equipment fuels, etc., as well as equipment refueling areas, must include containment measures (e.g., liner systems, dikes, etc.) to ensure that spillage of any material will not contact surface or ground waters. Storage areas and refueling areas shall be a minimum distance of 100 feet from any surface water body. All spills shall be promptly reported to the State Center for Pollution, Toxic Chemical and Oil Spills, 1-800-642-3074.
- 5. Upon completion of in-stream operations all disturbances below the ordinary high water mark will be properly stabilized within 24 hours to prevent soil erosion. Where possible, stabilization shall incorporate revegetation using bioengineering as an alternative to rip rap. If rip rap is utilized, it is to be of such weight and size that bank stress or slump conditions will not be created due to its placement. Fill is to be clean, nonhazardous and of such composition that it will not adversely affect the biological, chemical or physical properties of the receiving waters. Unsuitable materials include but are not limited to: Cadmium chromium arsenate (CCA) and creosote treated lumber, car bodies, tires, large household appliances, construction debris, and asphalt. To reduce potential slope failure and/or crosion behind the material, fill containing concrete must be of such weight and size that promotes stability during expected high flows. Loose large slab placement of concrete sections from demolition projects greater than thirty-six inches in its longest dimension and tires are prohibited. Rebar or were in concrete should not extend further

- than one (1) inch. All activities require the use of clean and coarse non erodible materials with 15% or less of like fines that is properly sized to withstand expected high flows.
- 6. Runoff from any storage areas or spills will not be allowed to enter storm sewers without acceptable removal of solids, oils and toxic compounds. Discharges from retention/detention ponds must comply with permit requirements of the National Pollutant Discharge Elimination System permit program of the West Virginia Department of Environmental Protection, Division of Water and Waste Management.
- 7. Land disturbances, which are integral to the completion of the permitted activity and are one (1) acre or greater in total area, must comply with the National Pollutant Discharge Elimination System or other state stormwater permit requirements as established by the West Virginia Department of Environmental Protection, Division of Water and Waste Management, if applicable. Best Management Practices for Sediment and Erosion Control, as described in the West Virginia Department of Environmental Protection's Erosion and Sediment Control Best Management Practice Manual, 2006, or similar documents prepared by the West Virginia Division of Highways may be used. These handbooks are available from the respective agency offices.
- 8. Concrete will not be permitted to enter the watercourse unless contained by tightly sealed forms or cells. Concrete handling equipment shall not discharge waste washwater into wetlands or watercourses at any time without adequate wastewater treatment as approved by the West Virginia Department of Environmental Protection, Division of Water and Waste Management.
- 9. In stream work in designated warm water streams and their adjacent tributaries during the fish spawning season, April June and trout waters and their adjacent tributaries during the trout water fish spawning season September 15-March 31st requires a spawning season waiver from the West Virginia Division of Natural Resources, Wildlife Resources Section. For information about specific stream designations contact DEP's Water Quality Standards Section at 304-926-0495. The Wildlife Resources Section, Trout Fisheries Program at 304-637-0245 or Warm Water fisheries Program 304-558-2771 should be contacted if a waiver is needed. In stream work may occur during the respective spawning season in ephemeral waters without a waiver if all reasonable measures are taken to minimize turbidity and sedimentation downstream associated with the proposed project.
- 10. Removal of well-established riparian vegetation not directly associated with the project construction is prohibited. Disturbance and removal of vegetation from project construction area is to be avoided, where possible, and minimized when necessary. Removal of vegetation shall not be allowed where stream bank stability under normal flow conditions would be compromised.
- 11. Operation of equipment instream is to be minimized and accomplished during low flow periods when practical. Ingress and egress for equipment shall be within the work site. Location of ingress and egress outside the immediate work area requires prior approval of

- the West Virginia Department of Environmental Protection, Division of Water and Waste Management in concurrence with the West Virginia Division of Natural Resources.
- The permittee will comply with water quality standards as contained in the West Virginia Code of State Regulations, <u>Requirements Governing Water Quality Standards</u>, Title 47, Series 2.
- 13. Stream activities permitted under the Nationwide Permit Program require that a West Virginia Public Lands Corporation Right of Entry be obtained. Application for this authorization should be made to the West Virginia Division of Natural Resources, Office of Lands and Streams, Building 74, Room 200, 324 Fourth Avenue, South Charleston, West Virginia 25303, or by contacting them at 304-558-3225. Any activity within the 100-year floodplain requires approval from the appropriate Floodplain Manager. The following website provides a statewide listing of Floodplain Managers in West Virginia: www.dhsem.wv.gov/mitigation/floodplain/Pages/default.aspx
- 14. The deposit of dredged or fill materials in island back channels, embayments or stream mouths on Section 10 Rivers is not certified for any of the Nationwide Permits. Stream mouth is defined as the area extending 100 feet upstream and 100 feet downstream on receiving streams that are classified as a Section 10 stream.
- 15. This Standard Condition requires prior written authorization from the West Virginia Department of Environmental Protection, Division of Water and Waste Management for use of any of the Nationwide Permits for all work in Outstanding National Resource Waters listed within Section A below. Prior written notification to the West Virginia Department of Environmental Protection, Division of Water and Waste Management, is required for use of Nationwide Permits 3, 6, 7, 12, 13, 14, 16, 17, 18, 19, 27, 29, 33, 39, 40, 41, 42, 45, and 48 in any of the streams listed in Sections B and C as follows, except as may be provided for in the individual nationwide permit:
 - A. Tier 3 Protection-West Virginia Code of State Regulations, Requirements Governing Water Quality Standards, Title 47, Series 2. Outstanding National Resource Waters: Outstanding National Resource Waters include. but are not limited to, all streams and rivers within the boundaries of Wilderness Areas designated by The Wilderness Act (16 U.S.C. §1131 et seq.) within the State, all Federally designated rivers under the "Wild and Scenic Rivers Act", 16 U.S.C. §1271 et seq.; all streams and other bodies of water in state parks which are high quality waters or naturally reproducing trout streams; waters in national parks and forests which are high quality waters or naturally reproducing trout streams; waters designated under the "National Parks and Recreation Act of 1978", as amended; and pursuant to subsection 7.1 of 60CSR5, those waters whose unique character, ecological or recreational value, or pristine nature constitutes a valuable national or state resource. The listing of Tier 3 streams is located at: http://www.dep.wv.gov/WWE/Programs/wqs/Documents/Tier%203%20Info/ WV Tier 3 Maps 20101006 pdf

- B. All naturally reproducing trout streams in the following counties; Barbour, Fayette, Grant, Greenbrier, Hampshire, Hardy, Mercer, Mineral, Monroe, Nicholas, Pendleton, Pocahontas, Preston, Raleigh, Randolph, Summers, Tucker, Upshur and Webster. For information about specific streams contact Wildlife Resource Section, Trout Fisheries Program at 304-637-0245;
- C. 'West Virginia Natural Stream Preservation Act' The following streams or rivers are protected from activities that would impound, divert or flood the body of water: Greenbrier River from its confluence with Knapps Creek to its confluence with the New River, Anthony Creek from its headwaters to its confluence with the Greenbrier River, Cranberry River from its headwaters to its confluence with the Gauley River, Brich River from Cora Brown Bridge in Nicholas County to the confluence of the river with the Elk River, and New River from its confluence with the Greenbrier River to its confluence with the Gauley River.
- 16. Wetland and Stream Mitigation guidelines The discharge of fill material into a stream or wetland is authorized based upon the following criteria:
 - One-tenth to ½ acre of wetland impact requires a Pre-Construction Notice (PCN) and plan for mitigation to be submitted to the Corps of Engineers along with the proposed plan for mitigation provided to the state for approval.
 - The amount of fill in a wetland, wetland complex or wetland system without mitigation is not to cumulatively exceed 1/10 acre.
 - "West Virginia Stream Wetland Valuation Metric" (SWVM) will be used to assist with the determination of required mitigation. The metric is available at the Huntington and Pittsburgh Army Corps of Engineers web sites.

In all instances, mitigation for all impacts incurred through use of these Nationwide Permits must first be directed to elimination of the impacts, then minimization of the impacts and lastly through compensatory mitigation. In many cases, the environmentally preferable compensatory mitigation may be provided through approved mitigation banks or the West Virginia in-lieu fee program. Permittee responsible compensatory mitigation may be performed using the methods of: restoration, enhancement, establishment and in certain circumstances preservation. In general, the required compensatory mitigation should be located in the same watershed as the impact site, and located where it is most likely to successfully replace lost functions and services as the impacted site. However, the use of mitigation banks or in-lieu fee for in-kind replacement is not restricted to the major watershed in which the impact has occurred until such time as mitigation banks or in-lieu projects are developed in each major watershed.

When permittee responsible in-kind replacement mitigation is used it is to be accomplished at the following ratios until such time an approved functional assessment methodology is established for the state of West Virginia:

Impacts to open water wetlands are to be one (1) acre replaced for one (1) acre impacted.

Impacts to wet meadow/emergent wetlands are to be two (2) acres replaced for one (1) acre impacted.

Impacts to shrub-shrub and forested wetlands are to be three (3) acres replaced for one (1) acre impacted.

In instances where compensatory in-kind mitigation is completed 12 months prior to the impact of the resource, the replacement ratio may be reduced to as low as one (1) acre created/restored to every one (1) acre impacted.

NOTE: The ratio of created/restored wetlands to impacted wetlands not only insure no net loss, but assure the adequate replacement of the impacted wetlands functions and values at the level existing prior to the impact. For many of the more complicated type wetlands, such as scrub-scrub and forested, the values and functions cannot readily be replaced through creation. Furthermore, not all wetland creation is successful.

In certain instances, the West Virginia Department of Environmental Protection, Division of Water and Waste Management may consider the acquisition of existing wetlands. Acquisition ratios are the following:

5 to 1 for open water wetlands;

10 to 1 for wet meadow/emergent wetlands and

15 to 1 for scrub-scrub and forested wetlands

Under extenuating circumstances the director may accept lower ratios for high quality wetlands under significant threat of development.

All wetlands acquired, using the acquisition method of mitigation, will either be deeded to the West Virginia Division of Natural Resources' Public Land Corporation for management by the Wildlife Resources Section or placed under a conservation easement and be protected from disturbance by the permittee or their designee. Third party oversight of the conservation easement by a non-profit conservation organization is preferred.

Streams. Compensatory mitigation projects for stream impacts should attempt to replace lost functions. Mitigation will be determined on a case-by-case basis based on the pre and post condition stream quality and complexity of the mitigation project utilizing the SWVM worksheets. Compensatory mitigation may require protection through deed restrictions or conservation easements by the permittee or their designee.

17 Streams with Mussel populations.

- A. Should native freshwater mussels be encountered during the use of any Nationwide Permit, all activity is to cease immediately and the Wildlife Resources Section, Wildlife Diversity Program is to be contacted (304-637-0245) to determine significance of the mussel population and the action to be taken.
- B. The following list of streams are known to have mussel populations which are established as a protected "no take" species by the state or contain protected habitat of mussels on the Federal Endangered Species list. Applicants wishing to conduct projects in these streams are strongly encouraged to contact the Wildlife Resources Section, Wildlife Diversity Program with a detailed project description and an accurate project location. For further information please contact the Wildlife Resources Section, Wildlife Diversity program at 304-637-0245.

Applicants should also give consideration to utilizing WVDNR's Wildlife Data Base Inquiry process. This resource is designed for the applicant as an informative preplanning tool. It allows the applicant to know, in advance, if they will be encountering any federally listed endangered species (ES), state species of concern and high quality fish and wildlife habitats such as trout streams, warm water fisheries, wetlands, karst and cave habitats. This inquiry can be obtained from the: Wildlife Data Base Coordinator, PO Box 67, Elkins West Virginia 26241. Information on what to submit to receive an inquiry should be directed to data base coordinator at 304-637-0245.

HUNTINGTON DISTRICT

	James River Drainage
J-i	Ports Creek
J-1-E	South Fork Potts Creek
J-3	Cove Creek
	Big Sandy River Drainage
BS	Big Sandy River
BST	Tug Fork River
	Kanawha River Drainage
K	Kanawha River
K-1	Crooked Creek
K-12	Thirteenmile Creek
K-14	Sixteenmile Creek
K-21	Buffalo Creek
K-22	Hurricane Creek
K-22-F	Mill Creek (Tackett Branch?)
K-24	Little Hurricane Creek
K-26	Guano Creek
KC	Coal River
KC-10	Little Coal River
KE	Elk River

	Oraniy Citca
KE-23-Q5	Hollywood Trace Fork
KE-31	King Shoals Run
KE-37	Laurel Creek
KE-74	Strange Creek
KE-76	Birch River
KE-9	Little Sandy Creek
KN	New River
KN-51	Indian Creek
KNB	Bluestone River
KNG	Greenbrier River
KNG-18	Wolf Creek
KNG-22	Muddy Creek
KNG-22-B	Mill Creek
KNG-23	Second Creek
KNG-53	Knapp Creek
KNG-61	Clover Creek (Cloverlick Creek)
KNG-66	Sitlington Creek
KNG-68	Deer Creek
KNG-79	West Fork Greenbrier River
KР	Pocatalico River
KP-17	Pocatalico Creek (Left Fork)
KP-17-B	Middle Fork Pocatalico Creek
KP-33-E	Cox Fork
KP-39	Big Lick
KP-41	Rush Creek
KP-45	Cranes Nest Run
	Little Kanawha River Drainage
LK	Little Kanawha River
LK- 86	Sand Fork
LK-II	Slate Creek
LK-23	Tucker Creek
LK-25	Reedy Creek
LK-25-?	Left Fork Reedy Creek
LK-25-R	Middle Fork Reedy Creek
LK-31	Spring Creek
LK-31-AA	Right Fork Spring Creek
LK-31-Z	Left Fork Spring Creek
LK-39	Straight Creek
LK-40	Leading Creek
LK-45	Yellow Creek
LK-53	Pine Creek
LK-66	Tanner Creek
	SMIRITE DIVE

Big Sandy Creek

Granny Creek

KE-23

KE-23-N

LK-72	Cedar Creek	OMI-21	Sancho Creek
LK-75	Leading Creek	OMI-23	Point Pleasant Creek
LK-75-K	Cove Creek	OMI-23-A	Pursley Creek
LK-75-N	Fink Creek	OMI-23-B	Elk Fork
LK-86	Sand Fork	OMI-29	Indian Creek
LK-94	Oil Creek	OMI-30	McElroy Creek
LK-95	Saltlick Creek	OMI-40	Arnold Creek
LKH	Hughes River	OMI-43	Bluestone Creek
LKH-10	North Fork Hughes River	OMI-46	Meathouse Fork
LKH-10-C	Gillespie Run	OMI-46-E	Toms Fork
LKH-10-G	Devilhole Creek	OM1-46-J	Indian Fork
LKH-10-J	Addis Run	OMI-47	Buckeye Creek
LKH-10-R	Bonds Creek	OMI-46-E	Toms Fork
LKH-4	Goose Creek	OMI-46-J	Indian Fork
LKH-9	South Fork Hughes River	OMI-47	Buckeye Creek
LKH-9-AA	Middle Fork South Fork Hughes River	C	Phio River Direct Drainage
LKH-9-J	Indian Creek	0	Ohio River
LKH-9-M	Leatherbark Creek	0-2	Twelvepole Creek
LKH-9-R	Spruce Creek	O-2-H	Beech Fork
LKH-9-W	Slab Creek	O-2-P	West Fork Twelvepole Creek
LKH-9-X	Bone Creek	0-2-0	East Fork Twelvepole Creek
LKH-9-Y	Otterslide Creek	0-9 `	Guyan Creek
LKS	Steer Creek	O-30-A	Tombleson Run embayment
LKS-10	Left Fork Steer Creek	O-31	Little Mill Creek
LKS-9	Right Fork Steer Creek	O-32	Mill Creek
LKW	West Fork Little Kanawha River	O-32-D	Cow run
LKW-15	Henry's Fork	O-32-H	Parchment Creek
LKW-15-F	Laurel Run	O-32-L-7	Grasslick Creek
LKW-15-J	Beech Fork	O-32-L-8	Bear Fork
LKW-31	Left Fork West Fork Little Kanawha River	O-32-M	Elk Fork
	Guyandotte River Drainage	O-32-N	Little Mill Creek
OG	Guyandotte River	O-36	Sandy Creek
OG	Barboursville Lake	O-36-D	Crooked Fork
OG-14	Charley's Creek	O-36-J	Left Fork Sandy Creek
OG-24	TwOMIle Creek	O-36-J-5	Nesselroad Run
OGM	Mud River	O-38	Little Sandy Creek
OGM-12-A	Kilgore Creek	O-43-D	Little Pond Creek
OGM-20	Trace Fork	O-44	Lee Creek
OGM-22	Buffalo Creek	O-44-A	South Fork Lee Creek
OGM-25	Middle Fork Mud River	O-44-B	North Fork Lee Creek
OGM-33	Big Laurel Creek		
	Middle Island Creek Drainage		
OMI	Middle Island Creek		
OMI-4	McKim Creek		
OMI-9	Sugar Creek		
	<u> </u>		

PITTSBURGH DISTRICT

	Ohio River Direct Drainage
	Ohio River
0-57	French Creek
O-69	Fishing Creek
O-69-N	South Fork Fishing Creek
0-69-0	North Fork Fishing Creek
0-77	Fish Creek
O-77-J	Valley Run
0-77-0	WV Fork Fish Creek
O-77-O-8	Long Drain Creek
O-88	Wheeling Creek
O-88-D-2	Middle Wheeling Creek
O-88-L	Turkey Run
O-88-O	Enlow Fork
O-88-O-?	Dunkard Fork
O-92	Buffalo Creek
	Cheat River Drainage
M	Monongahela River
M-1	Dunkard Creek
M-1-?	Blacks Run
M-1-C	Days Run
M-1-E	Miracle Run
M-1-E-?	Right Branch Miracle Run
M-1-F	WV Fk Dunkard
M-1-F-6	North Fork WV Fork Dunkard Creek
M-1-F-6-A	Camp Run
M-1-F-7	South Fork WV Fork Dunkard Creek
MT	Tygart Valley River
MW	West Fork River
MW-13	Tenmile Creek upstream of Little Tenmile
MW-13-I-4	Jacob's Fork
MW-13-1-4	Salem Fork
MW-2	Booths Creek
MW-21	Elk Creek
MW-21-G	Brushy Fork of Elk Creek
MW-21-M	Gnatty Creek
MW-29	Isaacs Creek
MW-31	Hackers Creek
MW-31-C	Jesse Run
MW-32	Kincheloe Creek
MW-36	Freemans Creek
MW-36-D	Right Fork Freemans Creek
MW-38	Stonecoal Creek

MW-55	Right Fork West Fork River
MC-60-D	Blackwater River
MC-60-D-10 MC-60-D-8-	Sand Run
A?	Glade Run
MC-60-K-16	West Fork Glady
P	Potomac River Drainage
P-4-M	Mill Creek
P-6	Back Creek
P.9	Sleepy Creek
PC	Cacapon River
PC-24	Lost River
PC-7	North River
PNB-4	Patterson Creek
PNB-4-EE	North Fork Patterson Creek (below dam near mouth)
PSB	South Branch Potomac River
PSB-21	South Fork South Branch

18. Isolated Wetlands.

In some cases, the Corps of Engineers may determine that an activity will not impact waters of the United States because the water is an isolated wetland, and therefore does not require a 404 permit. However, under West Virginia State code (§§22-11-3(23)) isolated wetlands are designated waters of the State. Accordingly, any applicant proposing to impact an isolated wetland must contact the West Virginia Department of Environmental Protection, Division of Water and Waste Management to obtain all necessary approvals for activities impacting any isolated wetlands.

APPENDIX A

Streams with potential presence of Federally listed threatened and endangered species or their habitat

HUNTINGTON DISTRICT:

- 1. Big Sandy Creek; Kanawha County: Snuffbox.
- <u>Bluestone River</u>, Mercer and Summers counties (Bluestone Gorge to slackwater of Bluestone Reservoir): Virginia spiraea.
- 3. Cedar Creek; Braxton and Gilmer counties; Snuffbox.
- 4. Cove Creek; Monroe County: James spinymussel.
- Elk River, Braxton, Clay, and Kanawha counties (Sutton Dam to slackwater below Coonskin Park), including the lower one-half mile reaches of its tributaries <u>Birch River</u>, <u>Blue Creek</u>, and <u>Laurel Creek</u>: Clubshell, Pink mucket pearlymussel, Northern riffleshell, Rayed bean, and Snuffbox. The Elk River also contains the Diamond darter (candidate).
- 6. Fishing Creek; Wetzel County: Snuffbox.
- Gauley River: Fayette and Nicholas counties (Summersville Dam to Swiss): Virginia spiraea.
- 8. Greenbrier River; Greenbrier and Pocahontas counties: Virginia spiraea.
- 9. Henry Fork; Calhoun and Roane counties: Snuffbox.
- Hughes River, Ritchie and Wirt counties, including the lower one-half mile reach of its tributary Goose Creek: Snuffbox.
- Kanawha River, Fayette, Kanawha, Mason, and Putnam counties: Fanshell, Pink mucket pearlymussel, Sheepnose, Spectaclecase, and Tubercled-blossum pearlymussel.
- Leading Creek; Gilmer and Lewis counties, including the lower one-half mile reach of its tributary Fink Creek; Snuffbox.
- 13. <u>Little Kanawha River</u>, Braxton, Calhoun, Gilmer, Wirt, and Wood counties, including the lower one-half mile reaches of its tributaries <u>Leading Creek</u> (Calhoun Co., different stream than 5.d. above), <u>Pine Creek</u>, <u>Sand Fork</u>, <u>Slate Creek</u>, <u>Straight Creek</u>, <u>Tanner Creek</u>, <u>Tucker Creek</u>, and <u>Walker Creek</u>: Snuffbox.

- 14. Marsh Fork River including <u>Dingess Branch</u> and <u>Millers Camp Branch</u> and associated palustrine emergent and scrub-shrub wetlands; Raleigh County: Virginia spiraea.
- 15. McElroy Creek; Doddridge and Tyler counties: Snuffbox.
- 16. Meadow River, Fayette, Greenbrier, and Nicholas counties. Virginia spiraea.
- Meathouse Fork of Middle Island Creek; Doddridge County, including the lower one-half mile reaches of it tributary Toms Fork: Clubshell and Snuffbox.
- 18. Middle Island Creek; Doddridge, Pleasants, and Tyler counties, including the lower one-half mile reaches of its tributaries <u>Arnold Creek</u>, <u>Bluestone Creek</u>, <u>Buckeye Creek</u>, <u>Indian Creek</u>, <u>McKim Creek</u>, <u>Point Pleasant Creek</u>, and <u>Sancho Creek</u>: Clubshell, Rayed bean, and Snuffbox.
- 19. New River (Lower); Fayette County (Route 19 to Gauley Bridge): Virginia spiraea.
- North Fork Hughes River; Ritchie and Wirt counties, including the lower one-half mile reaches of its tributaries Addis Run, Bonds Creek, Devilhole Creek, and Gillespie Run: Snuffbox.
- Ohio River, Cabell, Jackson, Mason Pleasants, Tyler, Wetzel, and Wood counties: Fanshell, Pink mucket pearlymussel, Sheepnose, and Snuffbox.
- 22. Potts Creek and South Fork of Potts Creek; Monroe County: James spinymussel.
- 23. Reedy Creek; Roane and Wirt counties: Snuffbox.
- 24. South Fork Hughes River, Doddridge, Ritchie, and Wirt counties, including the lower one-half mile reaches of its tributaries Bone Creek, Indian Creek, Leatherbark Creek, Otterslide Creek, Slab Creek, and Spruce Creek: Clubshell and Snuffbox.
- 25. Spring Creek; Roane and Wirt counties: Snuffbox.
- 26. Steer Creek; Calhoun and Gilmer counties: Snuffbox.
- 27. Sugar Creek; Pleasants County: Snuffbox.
- 28. West Fork Little Kanawha River, Calhoun, Roane, and Wirt counties. Snuffbox.

PITTSBURGH DISTRICT

- 29. Back Creek; Berkeley County: Harperella.
- 30. Cacapon River, Morgan County: Harperella.

The Doddridge Independent **PUBLISHER'S CERTIFICATE**

I, Michael D. Zorn, Publisher of The Doddridge Independent, A newspaper of general circulation published in the town of West Union, Doddridge County, West Virginia, do hereby certify that:

Permit Application # 15-405

Please take notice that on the 30th day of October, 2015

EQT Production Company

filed an application for a Floodplain Permit to develop land located at or about:

WEU 51 Proposed Well Pad and Access Road Enhancement Location: Bluestone Creek/ 39.252992/80.755244

Received: 11/24/2015

Announced: 12/01/2015

Publication Date: Week of 11/23/15

20-Day Comment Period Window (from Commission Meeting) 12/21/2015 90-Day Approval Window (from date of receipt) N/A Project Description: Low Water Concrete Ford

was published in The Doddridge Independent 2 times commencing on Friday, November 27, 2015 and Ending on Friday, December 4, 2015 at the request of:

George Eidel, Doddridge County Floodplain Manager& Doddridge County Commission

Given under my hand this Monday, December 7, 2015

The publisher's fee for said publication is:

\$ 25.27 1st Run/\$ 18.95 Subsequent Runs This Legal Ad Total: \$ 44.22

Michael D. Zoffn

Publisher of The Doddridge Independent

Subscribed to and sworn to before me on

this date:

21<u>915</u>

Notary Public in and for Doddridge County

My Commission expires on

The /// day of May 20

20 / 7

Public Notice • Legal Notice

Doddridge County ~

Permit Application # 15-405

Please take notice that on the 30th day of October, 2015

EQT Production Company

filed an application for a Floodplain Permit to develop land located at or about:

WEU 51 Proposed Well Pad and Access Road Enhancement

Location: Bluestone Creek/ 39.252992/80.755244

Received: 11/24/2015

Announced: 12/01/2015

Publication Date: Week of 11/23/15

20-Day Comment Period Window (from Commission Meeting) 12/21/2015
90-Day Approval Window (from date of receipt) N/A

Project Description: Low Water Concrete Ford

The Application is on file with the Clerk of the County Court and may be inspected or copied during regular business hours. As this project is outside the PEMA identified floodplain of Doddridge County, Doddridge County Floodplain Management has no regulatory authority. Any interested persons who desire to comment shall present the same in writing by November 30, 2015, delivered to:

Clerk of the County Court 118 E. Court Street, West Union, WV 26456 Beth A Rogers, Doddridge County Clerk George Eidel. Doddridge County Flood Plain Manager

11/27 - 12/04

EQT WEU 51 CONCRETE FORD LATITUDE: 39.252992 LONGITUDE: 80.755244 (NAD 83)

ENTRANCE PERMIT

EGT PRODUCTION COMPANY WILL OBTAIN AN ENCROACHMENT PERMIT (FORM MM-109) FROM THE WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS, PRIOR TO COMMENCEMENT OF CONSTRUCTION

MISS UTILITY STATEMENT

MISS UTILITY OF WEST VIRGINIA WAS NOTED FOR THE LOCATING OF UTILITIES PRIOR TO THIS PROJECT DESIGN; TICKET #1324866542. IN ADDITION, MISS UTILITY WILL BE CONTACTED PRIOR TO START OF THE

ENVIRONMENTAL NOTES

A WETLAND DELINEATION WAS PERFORMED BY POTESTA & ASSOCIATES TO REVIEW THE SITE FOR WATERS AND WETLANDS THAT ARE MOST LIKELY WITHIN THE REGULATORY PURVIEW OF THE U.S. ARMY CORPS OF ENGINEERS (USACE) AND/OR THE WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION (WVDEP). THE SEPTEMBER 9, 2013 REPORT FOR EQT 51 PREPARED BY POTESTA & ASSOCIATES, INC., SUMMARIZES THE RESULTS OF THE FIELD DELINEATION. THE REPORT DOES NOT, IN ANY WAY, REPRESENT A JURISDICTIONAL DETERMINATION OF THE LANDWARD LIMITS OF WATERS AND WETLANDS WHICH MAY BE REGULATED BY THE USACE OR THE WVDEP. IT IS STRONGLY RECOMMENDED THAT THE AFORMENTIONED AGENCIES BE CONSULTED IN AN EFFORT TO GAIN WRITTEN CONFERMATION OF THE DELINEATION DESCRIBED BY THIS REPORT PRIOR GAIN WRITTEN CONFIRMATION OF THE DELINEATION DESCRIBED BY THIS REPORT PRIOR TO ENGAGING CONSTRUCTION ON THE PROPERTY DESCRIBED HEREIN. THE DEVELOPER SHALL OBTAIN THE APPROPRIATE PERMITS FROM THE FEDERAL AND/OR STATE REGULATORY AGENCIES PRIOR TO ANY PROPOSED IMPACTS TO WATERS OF THE U.S., INCLUDING WETLAND FILLS AND STREAM CROSSINGS.

GEOTECHNICAL NOTES

A SUBSURFACE GEOTECHNICAL INVESTIGATION HAS NOT BEEN PERFORMED AT THIS

CONCRETE PAVEMENT DESIGN BASED ON SOIL TYPE ML WITH A CALIFORNIA BEARING RATIO OF 2. PAVEMENT DESIGN WAS BASED OFF OF AN ADT \neq 100 VEHICLES PER DAY WITH 50% TRUCKS.

NEW MILTON, OXFORD, SMITHBURG AND WEST UNION QUADRANGLE WEST VIRGINIA

LIST OF DRAWINGS		
SHEET NO.	DESCRIPTION	
1	TITLE SHEET	
2	CONCRETE FORD SITE PLAN	
3	TYPICAL SECTIONS	
4	SLAB 1 - 11' LENGTH	
5	SLAB 2 - 15' LENGTH	
6	SLAB 3 - 15' LENGTH	
7	SLAB 4 - 15' LENGTH	
8-10	DETAILS	
11	QUANTITIES & REBAR SCHEDULE	

LEGEND	
AS-BUILT INDEX CONTOUR AS-BUILD INTERMEDIATE CONTOUR EX. GAS LINE COMPOST FILTER SOCK EX. GAS LINE RISER EX. GAS LINE MARKER EX. GAS WELL EX. STREAM EX. WETLAND EX. CULVERT PROP. CONCRETE FORD	- 890 G CF R
EX. RIP RAP APRON	
PROP. RIP RAP APRON	
REMOVAL OF STONE	

Stantec

WEU EQT

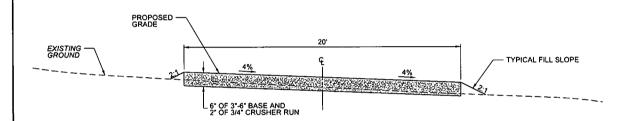
STANTEC CONSULTING, INC. FAIRMONT, WV 26554 PHONE: (304) 367-9401

SURVEYOR

SMITH LAND SURVEYING, INC. PO BOX 150 226 WEST MAIN STREET GLENVILLE, WV 26351

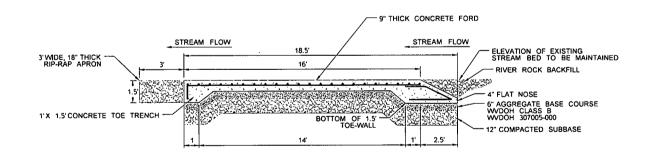
DATE: 10/13/2015 SCALE: AS SHOWN DESIGNED BY:SGJ FILE NO.:SLS-8051 SHEET 1 OF 11

ENGINEER



DATE: 10/13/2015 SCALE: AS SHOWN

FILE NO.:SLS-8051 SHEET 2 OF 11


MAIN ACCESS ROAD TYPICAL SECTION - BEFORE FORD

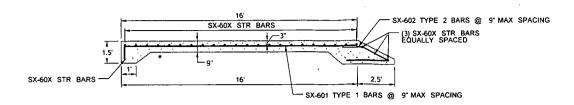
NOT TO SCALE

MAIN ACCESS ROAD TYPICAL SECTION - AFTER FORD

NOT TO SCALE

CONCRETE FORD TYPICAL SECTION

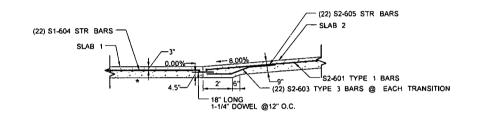
NOTE


1. CONCRETE SHALL BE fc= 4000'PSI,6% È 1% AIR CONTENT, WITH A 4" SLUMP 2. CONSTRUCTION JOINTS SHALL BE SEALED BY CAULKING.

 CONTROL JOINTS SHALL BE SAW CUI FER DELAIL.
 FRESH CONCRETE SHALL BE PROTECTED FROM RAINS, FLOWING WATER AND MECHANICAL DAMAGE FOR A PERIOD OF FOUR (4) DAYS.
 THE EINISHED SUPPLICE OF THE CONCRETE FORD, TRAVEL LANE SHALL BE

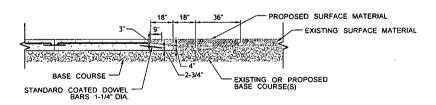
ROUGHENED.

6. ALL REINFORCING BAR SHALL BE ASTM A-615, GRADE 60.


7. EXCAVATE DOWN A MINIMUM OF 1-6" BELOW THE BOTTOM OF THE SURFACE SLAB FOUNDATION. THE ENTIRE AREA UNDER THE SLAB MUST BE EXCAVATED. THE EXPOSED SUBGRADE SHALL BE VERIFIED OR COMPACTED (IF REQUIRED) TO 95% OF THE MAXIMUM DRY DENSITY AT (+/-)2% OF OPTIMUM MOISTURE CONTENT ACCORDING TO ASTM D1557 (MODIFIED PROCTOR). 12" LAYER OF SUBBASE PLACED IN 6" LIFTS AND COMPACTED. AND

TYPICAL SECTION A-A

NOT TO SCALE


* NOTE: BASE COURSE AND SUBBASE NOT SHOWN FOR CLARITY

GRADE CHANGE DETAIL

NOT TO SCALE

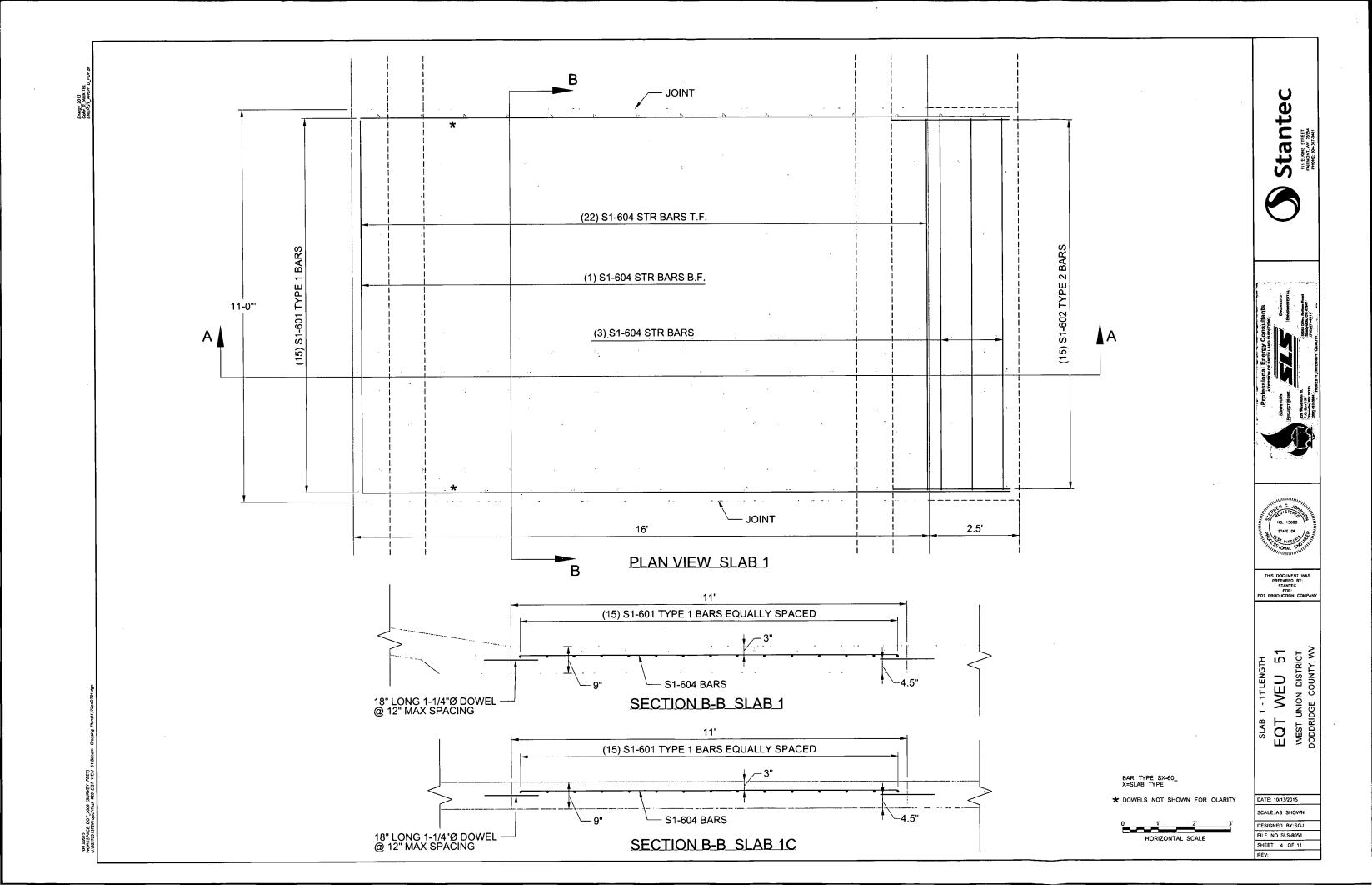
* NOTE: BASE COURSE AND SUBBASE NOT SHOWN FOR CLARITY

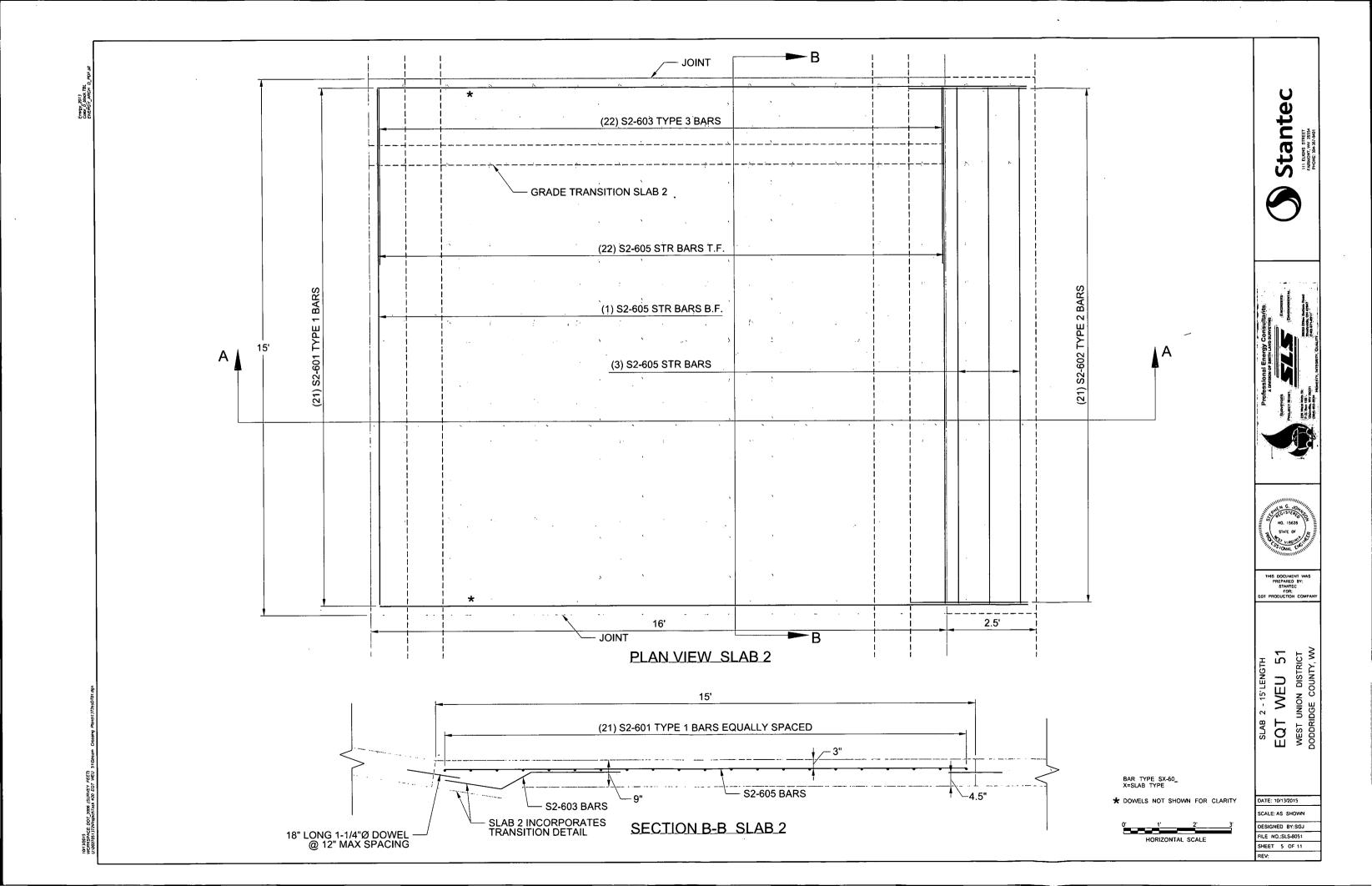
END TRANSITION DETAIL

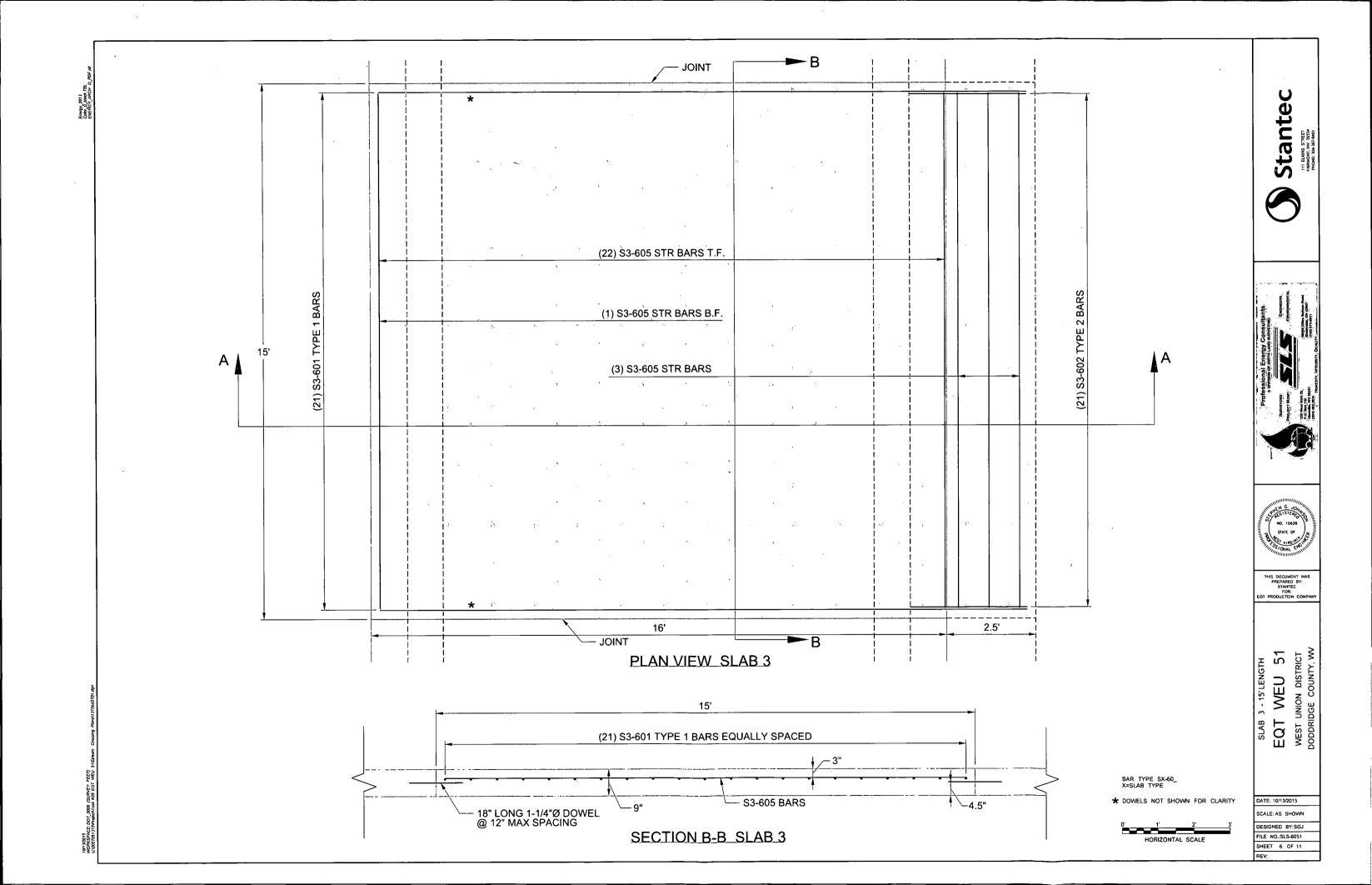
T TO SCALE

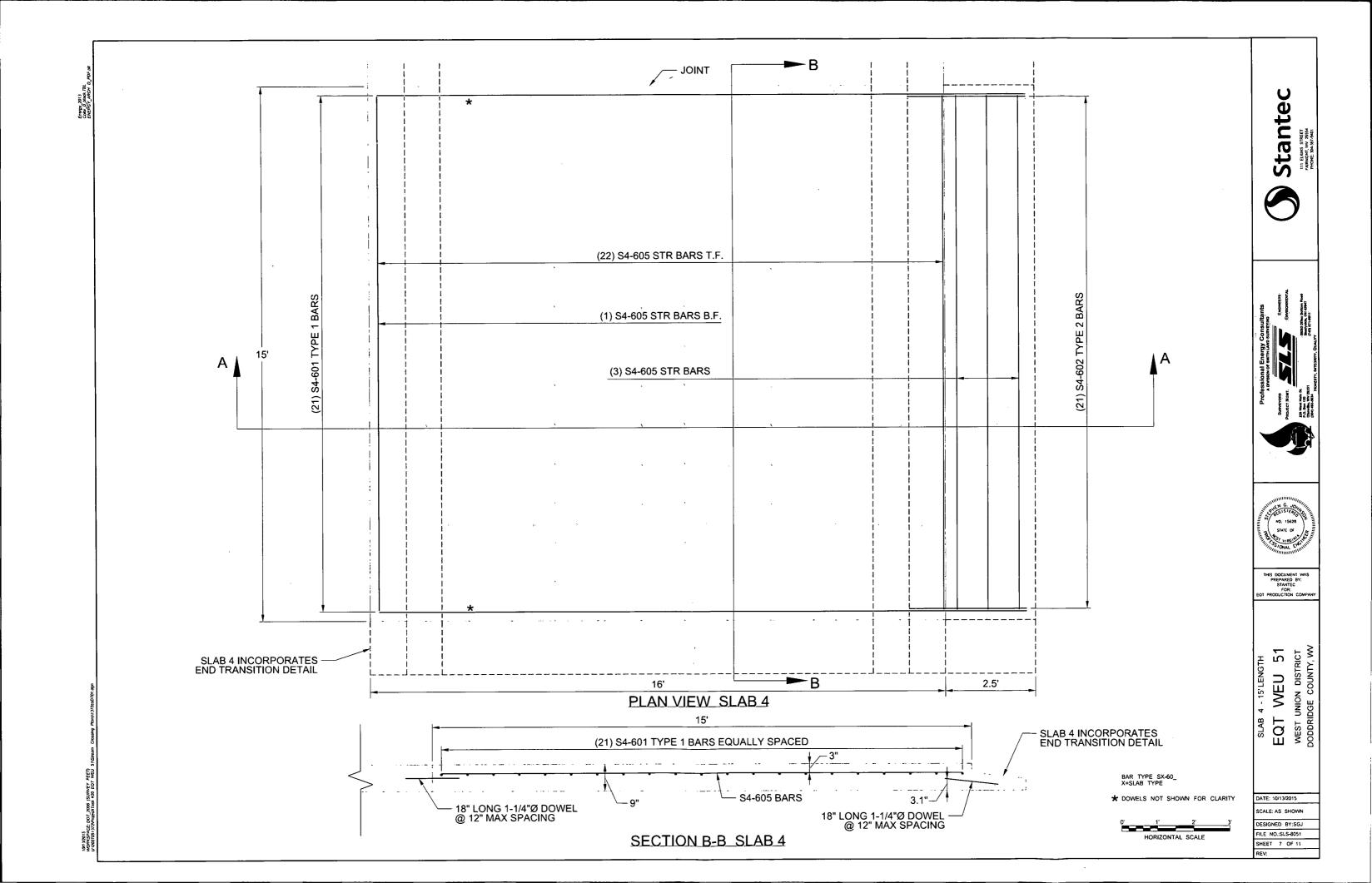
Stantec

THIS DOCUMENT V PREPARED BY: STANTEC FOR: EQT PRODUCTION CO

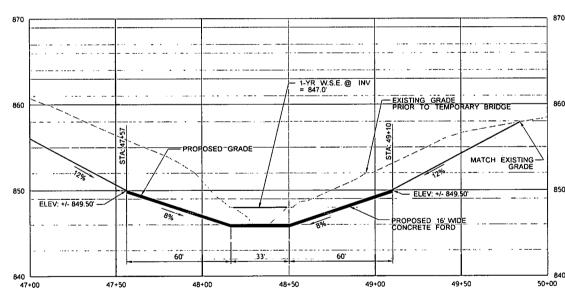

WEU 51


EQT
WEST U

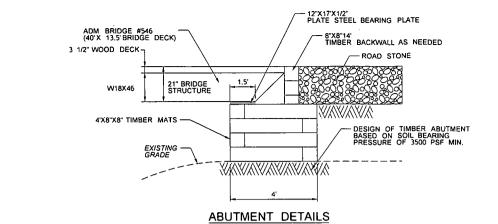

DATE: 10/13/2015 SCALE; AS SHOWN


FILE NO.:SLS-8051 SHEET 3 OF 11

10/132015 MADIVEDACE DOT 3006 FRIDARY EEED



1. CLEARING AND EXCAVATION OF THE STREAMBED AND BANKS SHALL BE KEPT TO A MINIMUM.
2. FILTER CLOTH SHALL BE PLACED ON THE STREAMBED AND STREAM BANKS PRIOR TO PLACEMENT OF THE CONCRETE FORD AND AGRAGAGE THE FILTER CLOTH SHALL COVER THE STREAMBED AND EXTEND AND MINIMUM OF SIX INCHES AND A MAXIMUM OF ONE FOOT BEYOND THE END OF THE FORD AND BEDDING MATERIAL.
3. A PUMP AROUND SYSTEM SHALL BE CONSTRUCTED ACROSS THE ROADWAY ON EITHER SIDE OF THE STREAM CROSSING AS DIRECTED.
4. APPROPRIATE PERIMETER CONTROLS SUCH AS COMPOST FILTER SOCK, SUPER SILT FENCE AND / OR SEDIMENT TRAPS SHALL BE EMPLOYED ALONG THE BANKS AND PARALLEL TO THE STREAMBED.
5. STREAMBED MATERIAL IS NOT TO BE USED AS FILL.
6. GREEN CONCRETE SHALL NOT BE PLACED IN CONTACT WITH FLOWING WATER.
7. DURING ROUTINE MAINTENANCE DO NOT GRADE MUD AND DEBRIS OVER THE SIDES OF THE CROSSING INTO THE STREAM.
8. THE CROSSING MUST BE INSPECTED AFTER EVERY RAIN EVENT OF 0.5 INCHES OR MORE AND ONCE A WEEK TO ENSURE THAT THE CONCRETE FLORE APPROVE AND ONSTRUCTIONS IMMEDIATELY OBSTRUCTIONS IMMEDIATELY BANKS ARE MAINTAINED AND NOT ORAMAGEN. NEVER ALLOW THE CROSSING TO BECOME OBSTRUCTED WITH DEBRIS AND REMOVE ANY OBSTRUCTIONS IMMEDIATELY BETS THE TENSILE STREAMTH REQUIREMENTS OF 180 LBS PER ASTM D 4632, MULLEN BURSTING REQUIREMENTS OF 80 LBS PER ASTM D 4833 10. CONCRETE FABRIC SHALL NUE A MINIMUM COMPRESSIVE STRENGTH REQUIREMENTS OF 180 LBS PER ASTM D 4837 11. STORM RUNOFF MAY DEPOSIT DEBRIS AT THE CROSSING LOCATION WHICH WILL NEED TO BE REMOVED.


PUMP AROUND NOTES:

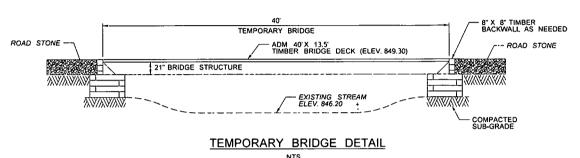
1. CONSTRUCTION SHOULD BE PERFORMED DURING LOW FLOW PERIODS.
2. PUMP(S) SHOULD BE SUPFICIENTLY LARGE TO PUMP THE ENTIRE STREAM FLOW AROUND THE SITE.
3. THE COFFERDAM CONSTRUCTED MUST BE IMPERVIOUS TO WATER.
4. THE INLET TO THE PUMP(S) IS TO BE SUSPENDED ABOVE THE STREAMBED IN ORDER TO PREVENT SUCKING MUD AND SEDIMENT.
5. THE DISCHARGE POINT MUST BE STABILIZED WITH ROCK TO DISPERSE THE ENERGY AND PREVENT EROSION.

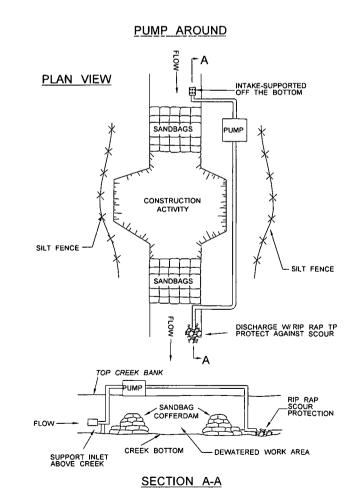
NOTE; SEE PLAN SHEET 2 OF 11 FOR A PLAN VIEW DETAIL OF THE FORD CROSSING

CROSS SECTION SCALE: HORIZ, 1" = 25' VERT, 1" = 5'

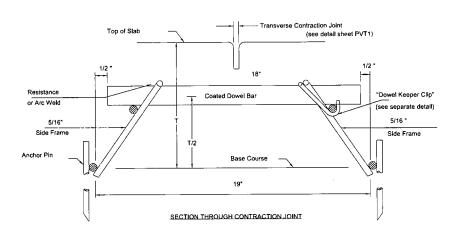
Stantec

NO. 15628 STATE OF


CONSTRUCTION DETAILS


EQT WEU 51

WEST UNION DISTRICT


DODDRIDGE COUNTY, WV

DATE: 10/13/2015 SCALE: AS SHOWN DESIGNED BY:SGJ FILE NO.:SLS-8051 SHEET 8 OF 11

SECTION B-B

Contraction Joint

Pavement Edge (Edge Shown)

TYPICAL JOINT LAYOUT FOR CONCRETE PAVEMENT

PAVEMENT JOINT DETAILS ADAPTED FROM WEST VIRGINIA DOH STANDARD DRAWINGS AND STANDARD SPECIFICATIONS. SEE DOH DRAWINGS AND SPECIFICATIONS FOR FOR ADDITIONAL

All dowel bars shall have a Department approved coating and shall meet the requirements of Section 709.15 of the Specifications. Dowel bar uncoated diameter to be 1/8 of the pavement thickness with minimum diameter of 1 1/4". Dowel bars to be 18" long and spaced on 1' c:c.

The units are to be shop assembled as to dowels, side frames, and center frames, and shipped nested.

The units are to be fabricated to fit the crown of the base course.

Wire used in the expansion and contraction joint load transfer units shall have a minimum ultimate tensile

The expansion joint load transfer unit detailed herein shall specially designated locations only.

Anchor pins are to be 1/2 " round bars and 16" minimum length to hold the unit rigidly in place. A minimum of 8 pins per unit shall be used.

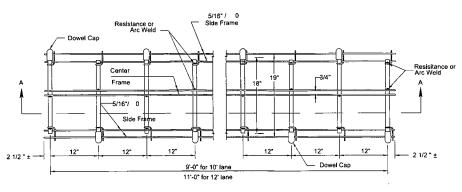
Tie bolts shall meet the requirements of Section 709.7 of the Specifications.

Tie bolts shall be placed on 30" centers(max.)

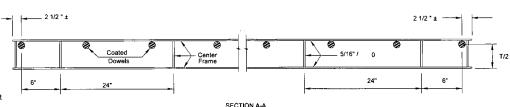
Tie bolts shall be placed 15" from each end of form.

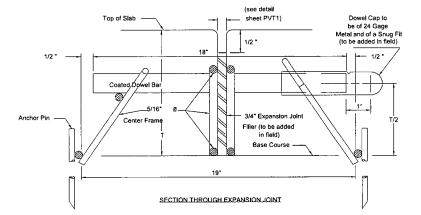
Metal channel shall run the full length of forms.

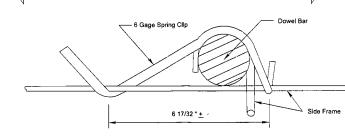
1-1/4" diameter tie bars; 30" long, placed longitudinally on 12" centers (max.), and centered across a longitudinal joint are required if width exceeds 16'.

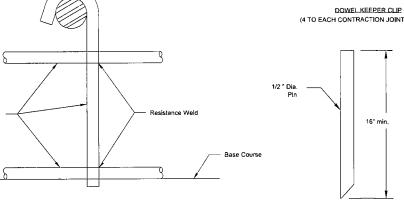

The longitudinal tie bolt assembly for slip-form paving shall consist of one sleeve nut, one 8" long hook bolt or J bolt, and 12" long alternate hook bolt. As an initial step in installing this assembly, the 12" long alternate hook bolt, with sleeve nut attached, shall be positioned in its proper location in the pavement by appropriate slip-form paving of the bolt assemblies.

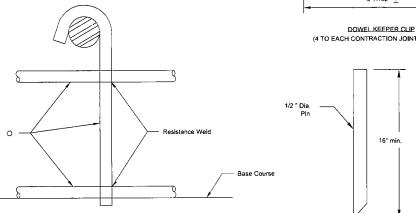
Typical tie bolt assemblies are shown herein. Minor variations in details and dimensional tolerances are permitted; however, minimum values specified herein shall be complied with. All tie bars and J or Hook Bolt Assemblies shall be epoxy coated in accordance with section 709.1 of the Standard Specifications. equipment.


For additional details and requirements concerning dowel bars and dowel baskets for Type A & B Joints, see Sheet 10 or WVDOH Standard Sheet PVT4.


Type D Longitudinal Joint may be used as an alternate to Type E Longitudinal Joint for lane-at-time construction . When so used, the construction joint between lanes shall be keyed as shown for Type E Joint. Type F joint is not intended, in lane-at-a-time construction, as an alternate to Type D or E Longitudinal Joints between main-line pavement slabs. For additional details and requirements concerning Types D and E Joints and the keyway for Type F Joint, see Standard Sheet PVT3, Longitudinal Tie Bolt


The shape shown for preformed elastomeric seals must conform to the requirements of 708.2 of the Specifications, in addition to the 1-1/4" (normal) width requirement, to be acceptable.


PLAN OF DOWEL UNIT FOR EXPANSION JOINT (JOINT FILLER NOT SHOWN)



DOWEL KEEPER CLIP (4 TO EACH CONTRACTION JOINT ASSEMBLY)

ANCHOR PIN

DATE: 10/13/2015 SCALE: AS SHOWN

CONSTRUCTION DETAILS

EQT WEU 51

UNION DISTRICT IDGE COUNTY, WV

PARECISTERED A

NO. 15628

STATE OF

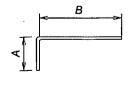
Stantec

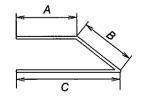
DESIGNED BY:SGJ FILE NO.:SLS-8051 SHEET 9 OF 11

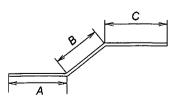
SIDE FRAME DETAIL

EQT WEU 51 MATERIAL Q	UANTITIES			
CONCRETE FORD CR	OSSING			
ITEM DESCRIPTION	QUANTITY	UNIT	UNIT COST	ITEM TOTAL
1.0 EXCAVATION	1,440	CY	\$	\$
2.0 AGGREGATE SURFACING			\$	\$
2.a. 8" OF 3"-6" STONE BASE (VARIABLE DEPTH)	132	TONS	\$	\$
2.b. 2" OF 3/4" CRUSHER RUN	35	TONS	\$	\$
2.c. GEOTEXTILE	337	SY	\$	\$
*				
3.0 WATER PUMP AROUND	1	LS	\$	\$
4.0 CONCRETE FORD			\$	\$
4.a. 4,000 PSI CONCRETE	96	CY	\$	\$
4.b. 12" SUBBASE	194	TONS	\$	\$
4.c. 6" WVDOH CLASS B BASE COURSE	94	TONS	\$	\$
4.d. GEOTEXTILE	315	SY	\$	\$
4.e. RIP RAP	45	TONS	\$	\$
4.f. #6 REBAR	13,276	LB	\$	\$
4.g.1-1/4" DOWEL BARS	1,316	LB	\$	\$
5.0 REMOVE EXISTING BRIDGE AND EXCAVATE EXCESS STONE	1	LS	\$	\$

*NOTE: CONSTRUCTION JOINT WORK AND MATERIALS ARE INCIDENTAL TO THE CY PRICE FOR CONCRETE


	SLA	B TYPE 1	11'x16' FU	AT ⁷				(2)TY	PE 1 SLABS			
MARK	TYPE		GTH:	NUMBER	SLAB TOTAL	TOTAL	Ī		DIMENS	IONS E		J
		(EA	GH))	REQ D	WEIGHT	WEIGHT?		Α.				C
		File	- IN		(LBS); 602001-001	(LBS) 602001-001	ETE :	iŇL	ET	Į, IŅI,,	FTi	IN.
\$1-601	1	16	6	15	371.7	743.5	1	0	15	6		
51-602	2	6	2	15	138.9	277.9	1	2	2	0	3	0
\$1-604	STR	10	6	26	410.0	820.1						
1-1/4" DOWEL	STR	1	6	17	109.7	219.3					<u>. </u>	L


	SLA	B TYPE 1C	11'x16' FL	AT				(1) TY	PE 1C SLAB		·	
MARK'	TYPE	LEN	GTH:	NUMBER	SLABITOTAL	TOTAL		100 100 100	DIMENS	IONS	- 4	
	[(ÈA	CH)	REQ D	<u>W</u> EIGHT:	WEIGHT		A))		œ.
	i			ľ	(LBS)	(LBS)	[•		
		Fil	IN		602001-001	602001-001	FT(IN	FT(IÑI	'हर्ग'	IN
S1-601	1	16	6	15	371.7	371.7	1	0	15	6		<u> </u>
\$1-602	2	6	2	15	138.9	138.9	1	2	2	0	3	0
51-604	STR	10	6	26	410.0	410.0						<u> </u>
1-1/4" DOWEL	STR	1	6	34	219.3	219.3						


	SLABIT	YPE 2 15'x	16 TRANS	ITION		T		(2) Ti	PE 2 SLABS	1		
MARK	TYPE	LEN	GTHI	NUMBER	SLAB TOTAL	TOTAL			DIMEN.	SIONS		* ****
		(EA	CH)	REQ'D	WEIGHT	WEIGHT		Α\	[3)		G.,
					(LBS)	(L8S))						
		FT	IN:		602001-001	602001,001	. Pr	IN	FT	INI	ETi:	IN.
52-601	1	16	6	21	520.4	1040.9	1	0	15	6		i
\$2-602	2	6	2	21	194.5	389.0	1	2	2	0	3	0
S2-603	3	4	0	22	132.2	264.4	. 1	9	11	1	1	2
\$2-605	STR	14	6	26	566.3	1132.5			L			
1-1/4" DOWEL	STR	1	6	17	109.7	219.3						

		SLAB TYPE	3) 15 x16			L		(4) Th	PE 3 SLABS			
MARK	TYPE	LEN	GTH E	NUMBER	SLAB TOTAL	TOTAL	-		DIMEN	SIONS		
	i	(EA	CH) FE	REQ'D	WEIGHT:	WEIGHT		A:	[[3		C'
-					(LBS)	(LBS)						
	<u> </u>	FI	ÎN)		602001-001	602001-001	ET	ÍN		L_INL_	Fit	IÑ
53-601	1	16	6	21	520.4	2081.8	1	0	15	6		
S3-602	2	6	2	21	194.5	778.0	1	2	2	0	3	0
53-605	STR	14	6	26	566.3	2265.0			l			
-1/4" DOWEL	STR	1	6	17	109.7	438.6						

L	SL	ABITYPE 4	15 x 16 EN	D)	e			(2))T)	PE 4 SLABS	ب دوسیت کا		
MARK	TYPE	LEN	GTH)	NUMBER	SLAB/TOTAL	TOTAL			DIMENS	IONS		
		(EA	CH)	REO D	WEIGHT	WEIGHT		A)	E			C:
7					(<u>LBS</u>)	(UBS))						
	1	FT	INI		602001-001	602001-001	ETT	IN	FT	IN	ETI	IN
S4-601	1	16	6	21	520.4	1040.9	1	0	15	6		
S4-602	2	6	2	21	194.5	389.0	1	2	2	0	3	0
S4-605	STR	14	6	26	566.3	1132.5						
1-1/4" DOWEL	STR	1	6	17	109.7	219.3						

TYPE 1

TYPE 2

TYPE (3)

QUANTITIES & REBAR SCHEDULE

EQT WEU 51

WEST UNION DISTRICT

DODDRIDGE COUNTY, W

DATE: 10/13/2015 SCALE: AS SHOWN

DESIGNED BY:SGJ FILE NO.:SLS-8051 SHEET 11 OF 11 REV:

PROJECT INFORMATION

PROJECT NAME: EQT WEU 51

TAX PARCEL: WEST UNION DISTRICT, DODDRIDGE COUNTY, WV TAX MAP 23-02

SURFACE OWNER:

JANE HARDIN (TRUSTEE) OF MARY HOLLAND TRUST WEST UNION DISTRICT DODDRIGE COUNTY, WV TOTAL PROPERTY AREA: 1,557.637 +/- ACRES TOTAL DISTURBANCE AREA: 51.8 +/- ACRES

OIL AND GAS ROYALTY OWNER: LEEMAN MAXWELL HEIRS DODDRIGE COUNTY, WV LEASE ACREAGE: 1,000 +/- ACRES

SITE LOCATION:

THE EQT WEU 51 SITE ENTRANCE IS LOCATED 1.6 MI+/- SOUTH OF THE JUNCTION OF WY 18 AND CR 13. THE WELL PAD IS LOCATED 1.4 MILES +/- SOUTHWEST OF THE JUNCTION OF WV 18 AND CR 13.

LOCATION COORDINATES

EQT WEU 51 WELL PAD CENTER LATITUDE: 39.255748 LONGITUDE: 80.763153 (NAD 83)

FOT WELL 51 ASSOCIATED IMPOUNDMENT CENTER LATITUDE: 39.254970 LONGITUDE: 80.761271 (NAD 83)

EQT WEU 51 ASSOCIATED PIT CENTER LATITUDE: 39.254852 LONGITUDE: 80.763071 (NAD 83)

EQT WEU 51 ACCESS ROAD AT CR 13 LATITUDE: 39.252144 LONGITUDE: 80.745033 (NAD 83)

GENERAL DESCRIPTION

THE WELL PAD, ACCESS ROAD, ASSOCIATED IMPOUNDMENT, AND ASSOCIATED PIT ARE BEING CONSTRUCTED TO AID IN THE DEVELOPMENT OF INDIVIDUAL MARCELLUS SHALE GAS WELLS.

SITE DISTURBANCE COMPUTATIONS

WELL PAD/ASSOCIATED PIT/ASSOCIATED IMPOUNDMENT AREA = 11.5 +/- ACRES ACCESS ROAD AREA = 40.3 +/- ACRES TOTAL SITE DISTURBANCE AREA = 51.8 +/- ACRES

ENTRANCE PERMIT

EQT PRODUCTION COMPANY WILL OBTAIN AN ENCROACHMENT PERMIT (FORM MM-109) FROM THE WEST VIRGINIA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS, PRIOR TO COMMENCEMENT OF CONSTRUCTION

MISS UTILITY STATEMENT

MISS UTILITY OF WEST VIRGINIA WAS NOTED FOR THE LOCATING OF UTILITIES PRIOR TO THIS PROJECT DESIGN: TICKET #1324866542. IN ADDITION, MISS UTILITY WILL BE CONTACTED PRIOR TO START OF THE

ENVIRONMENTAL NOTES

A WETLAND DELINEATION WAS PERFORMED BY POTESTA & ASSOCIATES TO REVIEW THE SITE FOR WATERS AND WETLANDS THAT ARE MOST LIKELY WITHIN THE REGULATORY PURVIEW OF THE U.S. ARMY CORPS OF ENGINEERS (USACE) AND/OR THE WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION (WVDEP). THE SEPTEMBER 9, 2013 REPORT FOR EQT 51 PREPARED BY POTESTIA (AVDET). THE SET LEMBER 3, 2013
REPORT FOR EQT 51 PREPARED BY POTESTIA & ASSOCIATES, INC., SUMMARIZES THE
RESULTS OF THE FIELD DELINEATION. THE REPORT DOES NOT, IN ANY WAY, REPRESENT A
JURISDICTIONAL DETERMINATION OF THE LANDWARD LIMITS OF WATERS AND WETLANDS WHICH MAY BE REGULATED BY THE USACE OR THE WYDEP, IT IS STRONGLY
RECOMMENDED THAT THE AFORMENTIONED AGENCIES BE CONSULTED IN AN EFFORT TO RECOMMENDED THAT THE APPORTMENT HONED AGENCIES BE CONSULTED IT AN EFFORT PRIOR TO ENGAGINE OF THIS REPORT PRIOR TO ENGAGING CONSTRUCTION ON THE PROPERTY DESCRIBED HEREIN. THE DEVELOPER SHALL OBTAIN THE APPROPRIATE PERMITS FROM THE FEDERAL AND/OR STATE REGULATORY AGENCIES PRIOR TO ANY PROPOSED IMPACTS TO WATERS OF THE U.S., INCLUDING WETLAND FILLS AND STREAM CROSSINGS.

GEOTECHNICAL NOTES

A SUBSURFACE GEOTECHNICAL INVESTIGATION HAS NOT BEEN PERFORMED AT THIS

RESTRICTIONS NOTES

- 1. THERE ARE PERENNIAL STREAMS, LAKES, PONDS, OR RESERVOIRS WITHIN 100 FEET OF THE PROJECT LOD. THERE ARE WETLANDS WITHIN 100 FEET OF THE PAD AND LOD, AND A WAIVER FROM THE WYDEP WILL BE APPLIED FOR THROUGH THE ARMY CORPS OF ENGINEERS.
- 2. THERE ARE NO NATURALLY PRODUCING TROUT STREAMS WITHIN 300 FEET OF THE PAD AND LOD.
- 3. THERE ARE NO GROUNDWATER INTAKE OR PUBLIC WATER SUPPLY FACILITIES WITHIN 1000 FEET OF THE PAD AND LOD.
- 4. THERE ARE NO KNOWN EXISTING WATER WELLS OR DEVELOPED SPRINGS WITHIN 250 FEET OF THE WELL(S) BEING DRILLED. STANTEC IS NOT RESPONSIBLE FOR ANY EXISTING WATER WELL OR DEVELOPED SPRING DISCOVERED DURING CONSTRUCTION.
- 5. THERE ARE NO OCCUPIED DWELLING STRUCTURES WITHIN 625 FEET OF THE CENTER
- 6. THERE ARE NO AGRICULTURAL BUILDINGS LARGER THAN 2,500 SQUARE FEET WITHIN

EQT WEU 51 SITE PLAN EQT PRODUCTION COMPANY

(PROPOSED WELL NO. H1-WV 514661, H2-WV 514662, H3-WV 514663, H4-WV 514664, H5-WV 514665)

NEW MILTON, OXFORD, SMITHBURG AND WEST
UNION QUADRANGLE
WEST VIRGINIA
7.5 MINUTE SERIES

2000'	0.	200
2000	<u> </u>	21

	IST OF DRAWINGS
SHEET NO.	DESCRIPTION
1	TITLE SHEET
2	GENERAL NOTES
3	OVERALL PLAN SHEET INDEX
4 - 10	ACCESS ROAD AND WELL SITE LAYOUT
11 - 14	ACCESS ROAD PROFILE
15 - 17	WELL PAD, ASSOCIATED PIT AND ASSOCIATED IMPOUNDMENT SECTIONS
18 - 19	ACCESS ROAD TYPICAL SECTIONS
20 - 37	MAIN ACCESS ROAD SECTIONS
38 - 40	PIT / IMPOUNDMENT ACCESS ROAD CROSS SECTIONS
41	EXISTING WELL ACCESS ROAD CROSS SECTIONS
42	STOCKPILE ACCESS ROAD CROSS SECTIONS
43 - 49	RECLAMATION PLAN
50 - 55	CONSTRUCTION DETAILS
56 - 57	CONSTRUCTION QUANTITIES

	LEG	END
EX. INDEX CONTOUR EX. INTERMEDIATE CONTOUR EX. BOUNDARY LINE EX. EDGE OF ROAD PAVEMENT EX. GUARDRAIL	1550	PROP. INDEX CONTOUR PROP. INTERMEDIATE CONTOUR PROP. CUT LINE PROP. FILL LINE PROP. LIMITS OF DISTURBANCE
EX. FENCELINE EX. GATE	XX	PROP. WELL HEAD
EX. OVERHEAD UTILITY EX. OVERHEAD UTILITY R/W EX. UTILITY POLE		PROP. CONTAINMENT BERM PROP. PERIMETER SAFETY FENCE ———————————————————————————————————
EX. GUY WIRE EX. TELEPHONE LINE	$\stackrel{\smile}{\longrightarrow}$	PROP. ACCESS GATE WITH EMERGENCY LIFELINE PROP. ROAD CENTERLINE
EX. GASLINE EX. GASLINE R/W	G	PROP. ROAD CENTERLINE PROP. FLAT BOTTOM DITCH WITH CHECK DAMS
EX. WATERLINE EX. WATER WELL	— w —	PROP. V-DITCH WITH CHECK DAMS
EX. GAS WELL	\Rightarrow	PROP. CULVERT PROP. RIP-RAP OUTLET PROTECTION
EX. TREELINE EX. REFERENCE TREE	() 1	PROP. RIP-RAP INLET PROTECTION RIP-RAP INLET PROTECTION CF————————————————————————————————————
EX. DELINEATED STREAM EX. DELINEATED WETLAND	ト 本 本 本 本 本 - 本 - 本 - 本 - 本 - 本 - 本 - 本	PROP. TREELINE PROP. ROCK CONSTRUCTION ENTRANCE
EX. BUILDING		X-SECTION GRID INDEX X-SECTION GRID INTERMEDIATE
		X-SECTION PROPOSED GRADE X-SECTION EXISTING GRADE

OPERATOR

EQT PRODUCTION COMPANY OPERATOR ID: 306686 BRIDGEPORT, WV 26630 PHONE: (304) 348-3870

ENGINEER

STANTEC CONSULTING, INC. 111 ELKINS STREET FAIRMONT, WV 26554 PHONE: (304) 367-9401

SURVEYOR

SMITH LAND SURVEYING, INC. PO BOX 150 226 WEST MAIN STREET GLENVILLE WV 26351

Stante

EQT

DATE: 9/16/2013

SCALE: AS SHOWN DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 1 OF 57

CONSTRUCTION NOTES

- THE CONTRACTOR IS TO VERIFY FIELD CONDITIONS PRIOR TO AND DURING CONSTRUCTION AND WILL NOTIFY STANTEC AT (304) 387-9401 OR SMITH LAND SURVEYING AT (304) 482-5834 IMMEDIATELY OF ANY DISCREPANCIES BETWEEN ACTUAL FIELD CONDITIONS AND THE APPROVED PLAN. ANY WORK PERFORMED BY THE CONTRACTOR AFTER THE FINDING OF SUCH DISCREPANCIES, SHALL BE DONE AT THE CONTRACTOR'S RISK.
- METHODS AND MATERIALS USED IN THE CONSTRUCTION OF THE METHODS AND MATERIALS USED IN THE CONSTRUCTION OF THE IMPROVEMENTS HEREIN SHALL CONFORM TO THE CURRENT COUNTY CONSTRUCTION STANDARDS AND SPECIFICATIONS AND/OR CURRENT WYDEP EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICE MANUAL STANDARDS AND SPECIFICATIONS. SHOULD A CONFLICT BETWEEN THE DESIGN, SPECIFICATIONS, AND PLANS OCCUR, THE MOST STRINGENT REQUIREMENT WILL APPLY. THE APPROVAL OF THE RESPONSIBILITIES CONTAINED IN THE WYDEP EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICE MANUAL.
- AN APPROVED SET OF PLANS AND ALL APPLICABLE PERMITS MUST BE AVAILABLE AT THE CONSTRUCTION SITE. ALSO, A REPRESENTATIVE OF THE DEVELOPER MUST BE AVAILABLE AT ALL TIMES.
- THE CONTRACTOR SHALL PROVIDE ADEQUATE MEANS OF CLEANING MUD FROM TRUCKS AND/OR OTHER EQUIPMENT PRIOR TO ENTERING PUBLIC STREETS, AND IT IS THE CONTRACTOR'S RESPONSIBILITY TO CLEAN STREETS, ALLAY DUST, AND TO TAKE WHATEVER MEASURES ARE NECESSARY TO ENSURE THAT THE STREETS ARE MAINTAINED IN A CLEAN, MUD AND DUST FREE CONDITION AT ALL TIMES.
- THE LOCATION OF EXISTING UTILITIES SHOWN IN THESE PLANS ARE FROM FIELD LOCATIONS. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO VERIFY THE EXACT HORIZONTAL AND VERTICAL LOCATION OF ALL EXISTING UTILITIES AS NEEDED PRIOR TO CONSTRUCTION. THE CONTRACTOR SHALL INFORM THE ENGINEER OF ANY CONFLICTS ARISING FROM HIS EXISTING UTILITY VERIFICATION AND THE PROPOSED CONSTRUCTION.
- THE CONTRACTOR SHALL PROVIDE NOTIFICATION TO THE APPROPRIATE UTILITY COMPANY PRIOR TO CONSTRUCTION OF WATER AND/OR GAS PIPE LINES. INFORMATION SHOULD ALSO BE OBTAINED FROM THE APPROPRIATE AUTHORITY CONCERNING PERMITS, CUT SHEETS, AND CONNECTIONS TO EXISTING LINES.
- THE CONTRACTOR WILL BE RESPONSIBLE FOR THE REPAIR OF ANY DAMAGES TO THE EXISTING STREETS AND UTILITIES WHICH OCCURS AS A RESULT OF HIS CONSTRUCTION PROJECT WITHIN OR CONTIGUOUS TO THE
- WHEN GRADING IS PROPOSED WITHIN EASEMENTS OF UTILITIES, LETTERS OF PERMISSION FROM ALL INVOLVED COMPANIES MUST BE OBTAINED PRIOR TO GRADING AND/OR SITE DEVELOPMENT.
- THE DEVELOPER WILL BE RESPONSIBLE FOR THE RELOCATION OF ANY UTILITIES WHICH IS REQUIRED AS A RESULT OF HIS PROJECT. THE RELOCATION SHOULD BE DONE PRIOR TO CONSTRUCTION.
- 10. THESE PLANS IDENTIFY THE LOCATION OF ALL KNOWN GRAVESITES.
 GRAVESITES SHOWN ON THIS PLAN WILL BE PROTECTED IN ACCORDANCE
 WITH STATE LAW. IN THE EVENT GRAVESITES ARE DISCOVERED DURING
 CONSTRUCTION, THE OWNER AND ENGINEER MUST BE NOTIFIED
- 11. THE CONTRACTOR(S) SHALL NOTIFY OPERATORS WHO MAINTAIN UNDERGROUND UTILITY LINES IN THE AREA OF PROPOSED EXCAVATING OR BLASTING AT LEAST TWO (2) WORKING DAYS, BUT NOT MORE THAN TEN (10) WORKING DAYS, PRIOR TO COMMENCEMENT OF EXCAVATING OR DEMOLITION.
- 12. THE CONTRACTOR IS TO CONTACT THE OPERATOR AND ENGINEER IF GROUNDWATER IS ENCOUNTERED DURING CONSTRUCTION. THE ENGINEER OR SURVEYOR IS NOT RESPONSIBLE FOR ANY BURIED WATER WELLS, SPRINGS OR ANY OTHER FEATURES UNCOVERED DURING CONSTRUCTION.
- 13. THE CONTRACTOR SHALL SCHEDULE A PRE-CONSTRUCTION MEETING WITH THE EROSION AND SEDIMENT CONTROL INSPECTOR TWO DAYS PRIOR TO THE START OF CONSTRUCTION.
- 14. THE CONTRACTOR IS RESPONSIBLE FOR ALL FILL MATERIAL TESTING REQUIRED DURING THE CONSTRUCTION OF THIS PROJECT. ALL MATERIAL TESTS SHALL BE CONDUCTED BY A CERTIFIED MATERIALS TESTING LABORATORY AND A CERTIFICATION OF THE MATERIALS TESTED SHALL BE PROVIDED BY A LICENSED PROFESSIONAL ENGINEER REPRESENTING THE LABORATORY. ALL TEST RESULTS SHALL BE SUBMITTED TO THE ENGINEER CERTIFYING THE CONSTRUCTED FACILITY. FAILURE TO CONDUCT THE DENSITY TEST SHALL BE CAUSE FOR NON-ACCEPTANCE OF THE CONSTRUCTED FACILITY.
- 15. THE CONTRACTOR IS RESPONSIBLE FOR CONSTRUCTING THE SITE IN ACCORDANCE WITH THE DESIGN PLANS AND CONSTRUCTION DOCUMENTS AND THE SCOPE OF WORK SHALL CONFORM WITH THE GRADES, BERMS, DEPTHS, DIMENSIONS, ETC. SHOWN HEREON.

MAINTENANCE PROGRAM

- BMPS WILL BE INSPECTED ON A WEEKLY BASIS AND AFTER EACH MEASUREABLE RAINFALL EVENT DURING THE ACTIVE CONSTRUCTION PHASE OF THE PROJECT.
- 2. ALL REVEGETATED ACCESS ROADS AND FACILITIES ARE TO BE MAINTAINED THROUGHOUT THE LIFE OF THE PROJECT.
- 3. CULVERTS, ROAD DITCHES, BROAD-BASED DIPS, DIVERSION DITCHES, AND ROCK CHECK DAMS MUST BE MAINTAINED IN PROPER WORKING ORDER AND WILL BE CLEANED OUT, REPAIRED, OR REPLACED AS NECESSARY.
- SEDIMENT SHOULD BE REMOVED FROM COMPOST FILTER SOCK WHERE ACCUMULATIONS REACH HALF THE ABOVE GROUND HEIGHT OF THE FILTER SOCK REPLACE SECTIONS OF FALLED FILTER SOCK IMPOLITELY. REMOVE ENTIRE FILTER SOCK UPON COMPLETION OF PROJECT AND ESTABLISHMENT OF VEGETATIVE
- 5. ALL AREAS OF EARTH DISTURBANCE WILL BE REPAIRED WHERE SIGNS OF
- SEEDING AND MULCHING WILL BE REPEATED IN THOSE AREAS THAT APPEAR TO BE FAILING OR HAVE FAILED.

CONSTRUCTION SEQUENCE

THE DEVELOPMENT OF THE SITE SHALL BE CONSISTENT WITH THE FOLLOWING GENERAL SEQUENCE OF CONSTRUCTION. THE CONTRACTOR SHALL IMPLEMENT, MAINTAIN, AND OPERATE ALL PROPOSED EROSION AND SEDIMENT CONTROL MEASURES TO EFFECTIVELY MITIGATE THE HAZARD OF ACCELERATED EROSION AND SEDIMENTATION TO ACCEPTABLE LEVELS. MINOR DEVIATIONS FROM THIS SEQUENCE SHALL BE EXECUTED BY THE PROJECTS SUPERINTENDENT AS NEEDED TO ELIMINATE ANY POTENTIAL EROSIVE CONDITION THAT MAY ARISE FOR THE DURATION OF THE PROJECT. THE WYDEP OFFICE OF OIL AND GAS SHALL BE NOTIFIED OF ANY AND ALL SUCH DEVIATIONS FROM THE APPROVED PLANS.

- HOLD A PRE-CONSTRUCTION CONFERENCE WITH THE CONTRACTOR AND THE APPROPRIATE EROSION AND SEDIMENT CONTROL INSPECTOR 48 HOURS PRIOR TO BEGINNING WORK TO REVIEW THE CONSTRUCTION DRAWING AND
- 2. STAKE THE LIMITS OF CONSTRUCTION.
- 3. INSTALL THE ROCK CONSTRUCTION ENTRANCE AS SHOWN ON THE
- INSTALL ALL BMPS NECESSARY TO BEGIN CLEARING AND GRUBBING OF THE SITE AS SHOWN ON THE PLANS AND DETAILS.
- 5. CLEAR AND GRUB THE ACCESS ROAD AND PAD ASSOCIATED PIT CLEAR AND GRUB THE ACCESS ROAD AND PAD, ASSOCIATED PIT, AND ASSOCIATED IMPOUNDMENT AREAS, ALL WOODY MATERIAL, BRUSH, TREES, STUMPS, LARGE ROOTS, BOULDERS, AND DEBRIS SHALL BE CLEARED FROM THE SITE AREA AND KEPT TO THE MINIMUM NECESSARY FOR PROPER CONSTRUCTION, INCLUDING THE INSTALLATION OF ANY NECESSARY SEDIMENT CONTROLS. TREES SIX INCHES IN DIAMETER AND LARGER SHALL BE CUT AND LOGS STACKED. SMALLER TREES, BRUSH, AND STUMPS SHALL BE CUT AND/OR GRUBBED AND WINDROWED IN APPROPRIATE AREAS FOR USE AS SEDIMENT BARRIERS AT WATER DRAINAGE OUTLETS, WINDROWED BELOW THE WELL SITE, USED FOR WILDLIFF HABITAT, BURNED (AS PER WY FOREST FIRE LAWS), REMOVED FROM THE SITE, OR DISPOSED OF BY OTHER METHODS APPROVED BY DEP. METHODS APPROVED BY DEP.
- 6. STRIP THE TOPSOIL FROM THE ACCESS ROAD AREAS, WELL PAD, ASSOCIATED PIT, AND ASSOCIATED IMPOUNDMENT AREAS. ALL STRIPPED TOPSOIL SHALL BE STOCKPILED ON AREAS SHOWN ON THE PLANS AND IMMEDIATELY STABILIZED. ADDITIONAL BMP MEASURES SHALL BE CONSTRUCTED AROUND TOPSOIL STOCKPILES, IF NECESSARY
- CONSTRUCT THE ACCESS ROAD, PROPOSED CROSS CULVERTS AND ROAD SIDE DITCHES. AS ACCESS ROAD CONSTRUCTION PROGRESSES, BEGIN WELL PAD, ASSOCIATED PIT, AND ASSOCIATED IMPOUNDMENT CONSTRUCTION TO GENERATE EXCESS MATERIAL REQUIRED FOR ACCESS ROAD CONSTRUCTION. AS FILL SLOPES ARE CONSTRUCTED, INSTALL SLOPE INTERRUPTION COMPOST FILTER SOCK AS LABELED ON THE PLANS AND SHOWN ON THE DETAILS.
- 8. INSTALL DITCH RELIEF CULVERTS AT A MINIMUM SLOPE OF 1% AND APPROXIMATELY 30 DEGREES DOWNGRADE TO THE CENTERLINE OF THE DITCH. INSTALL OUTLET PROTECTION AS SHOWN ON PLANS AND DETAILS AS CROSS CULVERTS ARE INSTALLED AND IMMEDIATELY STABILIZE ROAD SIDE DITCHES WITH ROCK. STABILIZE THE ROAD WITH GEOTEXTILE FABRIC AND STONE AND SIDE SLOPES AS SPECIFIED WITH PERMANENT SEEDING. STOCKPILE AND STABILIZE EXCESS MATERIAL ALONG THE ACCESS ROAD, AS NEEDED.
- ALL DITCH LINES SHALL BE CLEANED PRIOR TO INSTALLATION OF LINED PROTECTION. ALL DITCHES SHALL BE ROCK LINED WITH D50 = 6° MIN. SIZED RIPRAP UNLESS SPECIFIED OTHERWISE.
- 10. FINALIZE GRADING OF THE WELL PAD, ASSOCIATED PIT, AND ASSOCIATED IMPOUNDMENT. IMMEDIATELY STABILIZE THE OUTER AREAS OF THE WELL PAD, PIT, AND IMPOUNDMENT. THE WELL PAD AND MANIFOLD PAD AND TURNAROUND AREA(S) SHALL BE STABILIZED WITH GEOTEXTILE FABRIC AND STONE. STABILIZE ALL SIDE SLOPES WITH COCONUT EROSION CONTROL BLANKETS. APPLY SEED AND MULCH TO ALL DISTURBED AREAS. THIS SHALL BE INCLUDED IN ALL AREAS THAT WILL NOT BE SUBJECT TO REGULAR TRAFFIC ACTIVITY (TO BE STABILIZED WITH STONE). OR ANY DISTURBED AREA THAT WILL NOT BE RE-DISTURBED BEFORE SITE PECLAMATION REGINS.
- 11. PRIOR TO THE INSTALLATION OF THE ASSOCIATED PIT AND ASSOCIATED IMPOUNDMENT LINER SYSTEM, THE CONTRACTOR SHALL CONTACT THE ENGINEER/SURVEYOR TO COMPLETE AN AS-BUILT SURVEY OF THE CONSTRUCTED PIT/IMPOUNDMENT/BERM TO ENSURE CONFORMANCE WITH THE DESIGN DRAWINGS. THE AS-BUILT WILL BE REVIEWED BY THE ENGINEER AND THE CONTRACTOR IS RESPONSIBLE FOR ANY CORRECTIVE ACTION DEEMED NECESSARY BY THE ENGINEER FOR ANY DEVIATION(S) FROM THE DESIGN DRAWINGS.
- 12. INSTALL THE LINER SYSTEM AND PERIMETER SAFETY FENCE WITH GATE AND EMERGENCY LIFE LINE AS SHOWN ON THE PLANS.
- 13. PREVIOUSLY DISTURBED AREAS AND IMMEDIATE DOWN SLOPE AREAS SHALL BE INSPECTED AFTER EACH RAINFALL STORM EVENT AND MONITORED WEEKLY FOR SIGNS OF ACCELERATED EROSION. IMPLEMENT ADDITIONAL BMPS AS DEEMED NECESSARY. THESE INSPECTIONS SHALL CONTINUE DURING THE DURATION OF THE PROJECT AND SUBSEQUENT SITE
- 14. ONCE THE ASSOCIATED PIT AND ASSOCIATED IMPOUNDMENT HAS BEEN CONSTRUCTED AND LINER SYSTEMS COMPLETED, SUBMIT THE AS-BUILT CERTIFICATION FOR THE FACILITIES TO THE WYDEP OFFICE OF OIL AND GAS PRIOR TO PLACING FLUIDS IN EITHER STRUCTURE.
- 15. COMMENCE THE DRILLING ACTIVITY.
- 16. ONCE DISTURBED AREAS HAVE BEEN RE-VEGETATED AND STABILIZED ONCE DISTORDED AND ASSENCE SERVICE BEING THE DAND STABILIZED FOLLOWING RECLAMATION, THE TEMPORARY BMPS IN THOSE AREAS MAY BE REMOVED. CONTINUE TO MONITOR THESE AREAS TO ENSURE A UNIFORM RATE OF 70% VEGETATIVE COVERAGE IS MAINTAINED. ANY AREAS FOUND TO BE DEFFICIENT SHALL BE RE-SEEDED AND MULCHED.

ASSOCIATED PIT/IMPOUNDMENT CONSTRUCTION STANDARDS

THE DESIGN, CONSTRUCTION, AND REMOVAL OF EMBANKMENTS ASSOCIATED WITH ASSOCIATED PITS/IMPOUNDMENTS FOR OIL AND GAS WELLS MUST BE ACCOMPLISHED IN SUCH A MANNER AS TO PROTECT THE HEALTH AND SAFETY OF THE PEOPLE, THE NATURAL RESOURCES, AND ENVIRONMENT OF THE STATE. THE PIT/IMPOUNDMENT EMBANKMENTS SHALL BE DESIGNED, CONSTRUCTED, AND MAINTAINED TO BE STRUCTURALLY SOUND AND REASONABLY PROTECTED FROM UNAUTHORIZED ACTS OF THIRD PARTIES.

- THE FOUNDATION FOR AN ASSOCIATED PIT/IMPOUNDMENT EMBANKMENT MUST BE STRIPPED AND GRUBBED TO A MINIMUM DEPTH OF 2 FEET PRIOR TO PLACEMENT AND COMPACTION OF EARTHEN FILL MATERIAL. NO EMBANKMENT FILL SHALL BE PLACED ON FROZEN MATERIAL.
- ANY SPRINGS ENCOUNTERED WITHIN THE FOUNDATION AREA SHALL ANY SPRINGS ENCOUNTERED WITHIN THE FOUNDATION AREA SHALL BE DRAINED TO OUTSIDE/DOWNSTREAM TOE OF EMBANKMENT. CONSTRUCTED DRAIN SECTION SHALL BE AN EXCAVATED 2' X 2' TRENCH AND BACK FILLED WITH TYPE A SAND, COMPACTED BY HAND TAMPER. NO GEOTEXTILES SHALL BE USED TO LINE TRENCH. THE LAST 3 FEET OF DRAIN AT THE DOWNSTREAM END SHALL BE CONSTRUCTED WITH AASHTO #8 MATERIA!
- SOILS FOR EARTHEN EMBANKMENT CONSTRUCTION SHALL BE LIMITED TO TYPES GC, GM, SC, SM, CL, OR ML (ASTMD-2487 UNIFIED SOILS CLASSIFICATION). SOILS MUST CONTAIN A MINIMUM OF 20% PP PLUS NO. 200 SIEVE AND BE "WELL GRADED" MATERIAL WITH NO COBBLES OR BOULDER SIZE MATERIAL MIXED WITH CLAY. A MINIMUM OF THREE SAMPLES SHALL BE CLASSIFIED.
- THE EARTHEN EMBANKMENT SHALL BE COMPACTED BY A VIBRATING SHEEPSFOOT ROLLER. THE LIFTS MUST BE IN HORIZONTAL LAYERS WITH A MAXIMUM LOOSE LIFT THICKNESS OF 12" AND MAXIMUM PARTICLE SIZE LESS THAN 6". ALL FILL SHALL BE COMPACTED TO 85% PER THE STANDARD PROCTOR TEST (ASTMD-698).
- 5. THE PLACEMENT OF ALL FILL MATERIAL SHALL BE FREE OF WOOD, STUMPS AND ROOTS, LARGE ROCKS AND BOULDERS, AND ANY OTHER NONCOMPACTABLE SOIL MATERIAL. THE EMBANKMENT SHALL BE COMPACT TO A MINIMUM OF VISIBLE NON-MOVEMENT, HOWEVER, THE COMPACTION EFFORT SHALL NOT EXCEED THE OPTIMUM MOISTURE LIMITS.
- 6. THE EMBANKMENT TOP SHALL BE A MINIMUM OF 15 FEET IN WIDTH.
- THE MINIMUM INSIDE SIDESLOPES SHALL BE 3H:1V AND OUTSIDE SIDESLOPES SHALL BE 2H:1V, UNLESS OTHERWISE SPECIFIED.
- ALL EXPOSED EMBANKMENT SLOPES NOT COVERED BY COMPACTED ROCKFILL OR RIPRAP SHALL BE LIMED, FERTILIZED, SEEDED AND MULCHED. PERMANENT VEGETATIVE GROUND COVER IN COMPLIANCE WITH THE WYDEP EROSION AND SEDIMENT CONTROL FIELD MANUAL MUST BE ESTABLISHED UPON THE COMPLETION OF THE PIT CONSTRUCTION. EMBANKMENTS SHALL BE MAINTAINED WITH A GRASSY VEGETATIVE COVER AND FREE OF BRUSH AND/OR TREES.
- A MINIMUM OF 2 FEET OF FREEBOARD SHALL BE MAINTAINED AT ALL TIMES DURING THE OPERATION OF THE PIT/IMPOUNDMENT.
- 10. ALL EMBANKMENT CONSTRUCTION AND COMPACTION TESTING SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR.

ASSOCIATED PIT/IMPOUNDMENT LINER SYSTEM NOTES

THE DESIGNED PIT/IMPOUNDMENT FACILITY SHALL BE FULLY LINED WITH A GEOSYNTHETIC LINER SYSTEM. LINERS SHALL BE INSTALLED IN ACCORDANCE TO MANUFACTURER'S SPECIFICATIONS.

- THE SUB-BASE SHALL BEAR THE WEIGHT OF THE LINER SYSTEM, WATER, AND EQUIPMENT OPERATING ON THE PIT OR IMPOUNDMENT WITHOUT CAUSING OR ALLOWING A FAILURE OF THE LINER SYSTEM.
- THE SUB-BASE SHALL BE COMPACTED TO ACCOMODATE POTENTIAL SETTLEMENT WITHOUT DAMAGE TO THE LINER SYSTEM.
- THE UPPER 6" OF THE SUB-BASE SHALL BE COMPACTED TO A STANDARD PROCTOR DENSITY OF AT LEAST 95%.
- THE SUB-BASE SHALL BE HARD, UNIFORM, SMOOTH AND FREE OF DEBRIS, ROCK FRAGMENTS, PLANT MATERIAL AND OTHER FOREIGN MATERIAL.
- THE SUB-BASE SHALL BE COVERED WITH NON-WOVEN GEOTEXTILE FABRIC TO CUSHION THE PRIMARY LINER AND ALLOW FOR ADEQUATE VENTING BETWEEN THE PRIMARY LINER AND THE SUB-BASE TO PREVENT THE ENTRAPMENT OF GASES BENEATH THE LINER SYSTEM.
- THE PIT/IMPOUNDMENT AREA SHALL BE DRAINED AND COMPLETELY DRY PRIOR TO THE PLACEMENT OF THE PRIMARY LINER. THE PRIMARY LINER SHALL MEET ALL WYDEP GUIDELINES FOR MINIMUM THICKNESS AND SHALL PREVENT THE MIGRATION OF WATER THROUGH THE LINER TO THE GREATEST DEGREE THAT IS TECHNOLOGICALLY POSSIBLE.
- THE PRIMARY LINER SHALL FULLY COVER THE BOTTOM AND SIDEWALLS OF THE PIT/IMPOUNDMENT.
- AN ANCHOR TRENCH SHALL BE EXCAVATED COMPLETELY AROUND THE PERIMETER OF THE PIT/IMPOUNDMENT AREA AT THE PLANNED ELEVATION OF THE TOP OF THE LINING. THE TRENCH SHALL BE A MINIMUM 36 INCHES DEEP AND 24 INCHES WIDE.
- ALL ELEMENTS OF THE LINER SYSTEM SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. ALL SEAMS AND SEALS AROUND ANY PROJECTIONS SHALL BE SEALED AND TESTED IN A METHOD APPROVED BY THE MANUFACTURER.
- GAS RELIEF VENTS SHALL BE PROVIDED ALONG THE TOP OF THE LINER AND WITHIN ONE FOOT OF THE PERIMETER OF THE PIT TO ALLOW GASES TO ESCAPE FROM UNDER THE GEOMEMBRANE. MAXIMUM SPACING FOR VENTS SHALL BE 30 FEET.
- 11. WATER LEVEL MARKINGS SHALL BE CLEARLY PAINTED (1' INCREMENTS) ON THE LINER SYSTEM TO IDENTIFY THE WATER SURFACE ELEVATION.

SITE CLEANUP & RECYCLE PROGRAM

- GARBAGE, FUELS OR ANY SUBSTANCE HARMFUL TO HUMAN, AQUATIC OR FISH LIFE, WILL BE PREVENTED FROM ENTERING SPRINGS, STREAMS, PONDS, LAKES, WETLANDS OR ANY WATER COURSE OR WATER BODY.
- OILS, FUELS, LUBRICANTS AND COOLANTS WILL BE PLACED IN SUITABLE CONTAINERS AND DISPOSED PROPERLY.
- 3. ALL TRASH AND GARBAGE WILL BE COLLECTED AND DISPOSED PROPERLY.
- ALL SEDIMENT REMOVED FROM SEDIMENT CAPTURING DEVICES SHALL BE PLACED ON THE TOPSOIL STOCKPILE, THEN SEEDED AND MULCHED, AS NECESSARY. ALTERNATIVELY, THE REMOVED SEDIMENT CAN BE TRANSPORTED TO A SITE WITH AN APPROVED PERMIT.

Ú

WEST UNION DISTRICT DODDRIDGE COUNTY, W GENERAL NOTES WEU g Ш

DATE: 9/16/2013

SCALE: AS SHOWN

DESIGNED BY:RJH/JM FILE NO.:SLS-8051

SHEET 2 OF 57

DATE: 9/16/2013 SCALE: AS SHOWN DESIGNED BY:RJH/JMR FILE NO.: SLS-8051

SHEET 3 OF 57

HORIZONTAL SCALE

OVERALL PLAN SHEET INDEX 51 EQT WEU

17220 STATE OF STATE
THIS DOCUMENT WAS PREPARED BY: STANTEC FOR

	EXCESS MATERIAL STOCKPILE # 3	SHEET 9
LIMIT OF DISTURBANCE AREA (LOD): 51.8 AC		
EXCESS MATERIAL STOCKPILES NAME VOLUME (CY) NAME VOLUME (CY)		

1190.00

1192.00

1194 00

1196.00

1198.00

1200.00

1202.00

1203.00 (STORAGE

1205.00

SHEET 6

WETLAND 2

WETLAND 2A

0.001

0.03

UNT 4

UNT 5 UNT 6 UNT 7

UNT 9 UNT 10 UNT 11 UNT 12 **UNT 13 UNT 14** UNT 15 UNT 16 UNT 17 UNT 18 UNT 19

UNT 24

UNT 25

UNT 26

UNT 26A

UNT 27A

UNT 28A UNT 30

UNT 33

TOTAL

35 70

55

149 36

158 146 67

1,478

1.502

3.947

7.438

12,078

17,988

25,213

29,372

33,907

38,833

63,091

165 791

312,409

507.261

754,665

1,058,935

1,233,605

1,424,111

1,630,985

SHEET 7

0.19362

0.50879

0.95875

1.55873

2.31598

3.24975

3.78579

4.37043

5.00530

1150.00

1152.00

1154.00

1156.00

1158.00

1160.00

1162.00

1164.00

1168.00 (STORAGE)

1170.00

3.486

8.110

13,973

21.178

29.829

40,029

51,879

80,947

146.431

340.610

586.854

889.486

1,252,830

1,681,202

2,178,933

2,750,347

3.399,754

4,131,476

EXCESS MATERIAL STOCKPILE # 4

EXCESS MATERIAL STOCKPILE # 6

SHEET

œ

THE EARTHWORK QUANTITIES PROVIDED ARE AN ESTIMATE FOR CONSIDERATION. THE QUANTITIES SHOWN ARE CALCULATED USING A 1:1 CUT/SWELL AND FILL/SHRINK FACTOR. THE QUANTITIES SHOWN MAY BE GREATER OR LESSER THAN ACTUALLY EXCAVATED. THE ENGINEER IS NOT RESPONSIBLE FOR VARIANCES FROM THE ESTIMATED QUANTITIES AND DOES NOT CERTIFY TO THEIR ACCURACY.

EXCESS MATERIAL STOCKPILE # 7

TOPSOIL STOCKPILE # 1

EXCESS MATERIAL STOCKPILE # 9

0.44938

1.04529

1.80099

2.72973

3.84479

5.15941

6.68689

8.44050

10.43345

EXCESS MATERIAL STOCKPIL						
NAME	VOLUME (CY)					
#1	1,584					
#2	900					
#3	6,187					
#4	25,280					
#5	8,790					
#6	15,000					
#7	3,800					
#8	1,711					
#9	5,120					

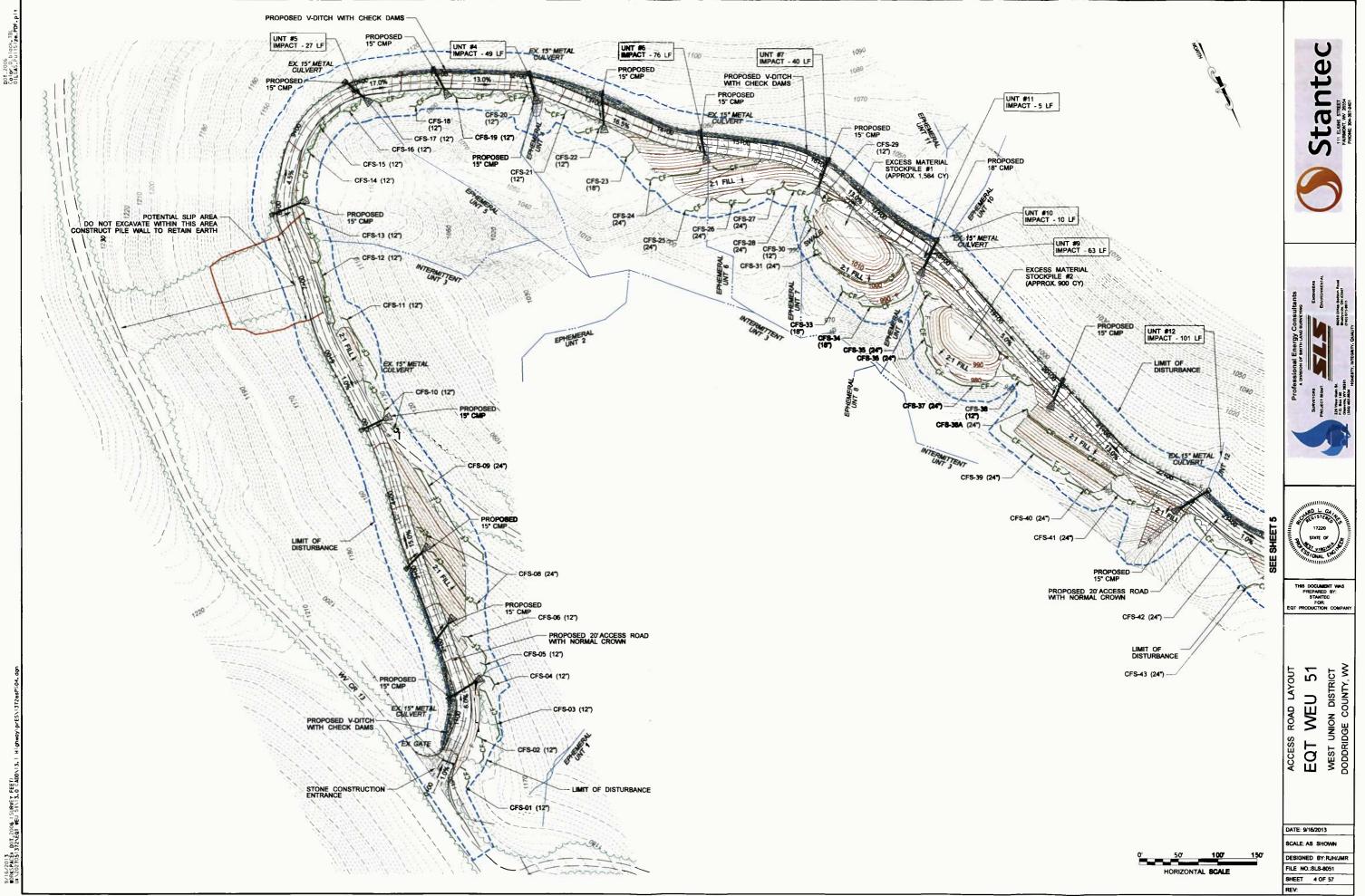
#9	6,120						
TOTALS	69,372						
		EQT WEL	51 SITE	EARTHM	YORK SUMI	WARY	
DESCR	IPTION	CUT (CY)	(CY)	SPOIL (CY)	BORROW (CY)	MAX SLOPE	LENGTH OF SLOP (FT)
ACCESS	ROADS	47,206	117,271	0	70,065	20.0	241
WELL	PAD	49,320	15.664	33,656	0	N/A	N/A

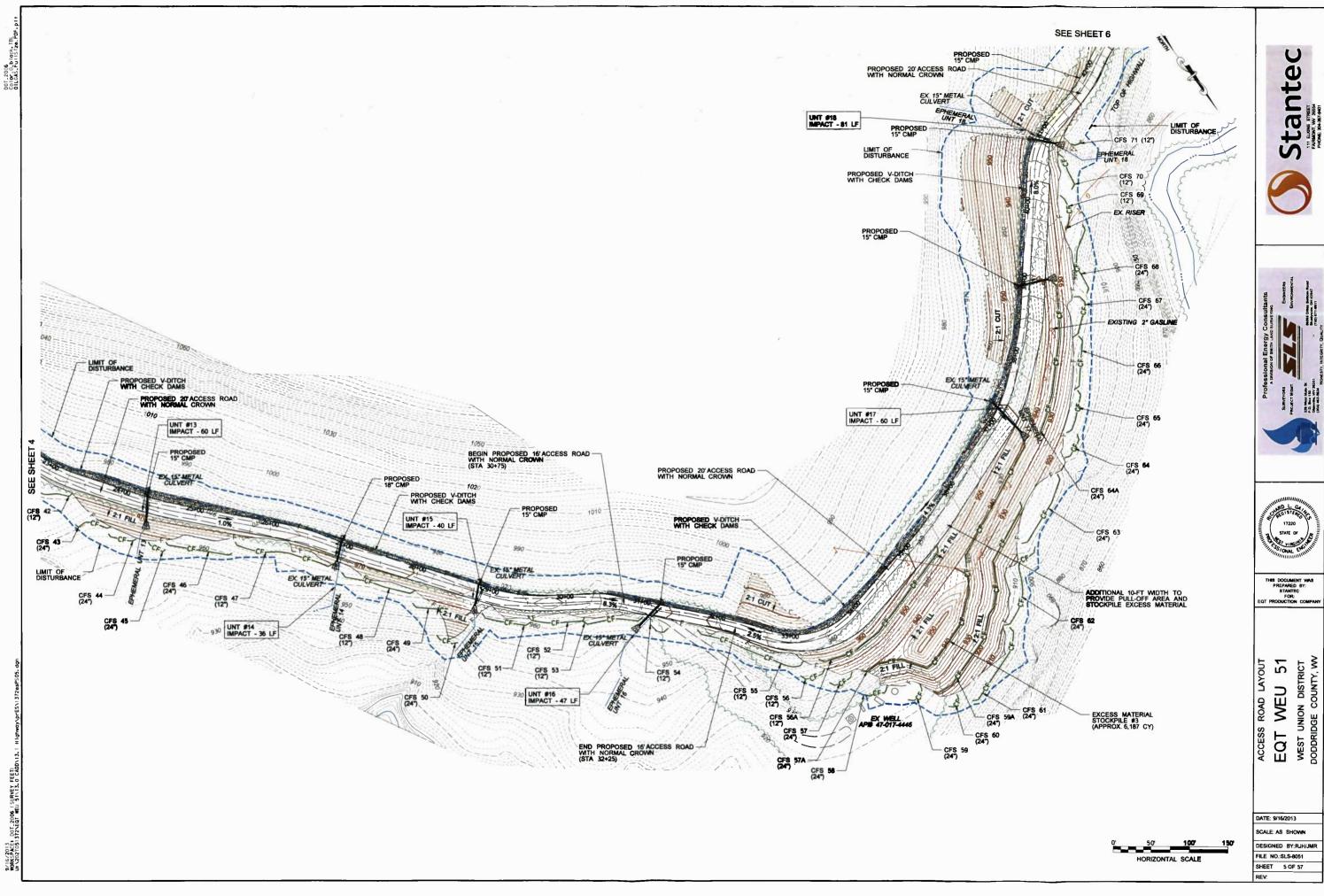
28,483 2,181 26,302

#1

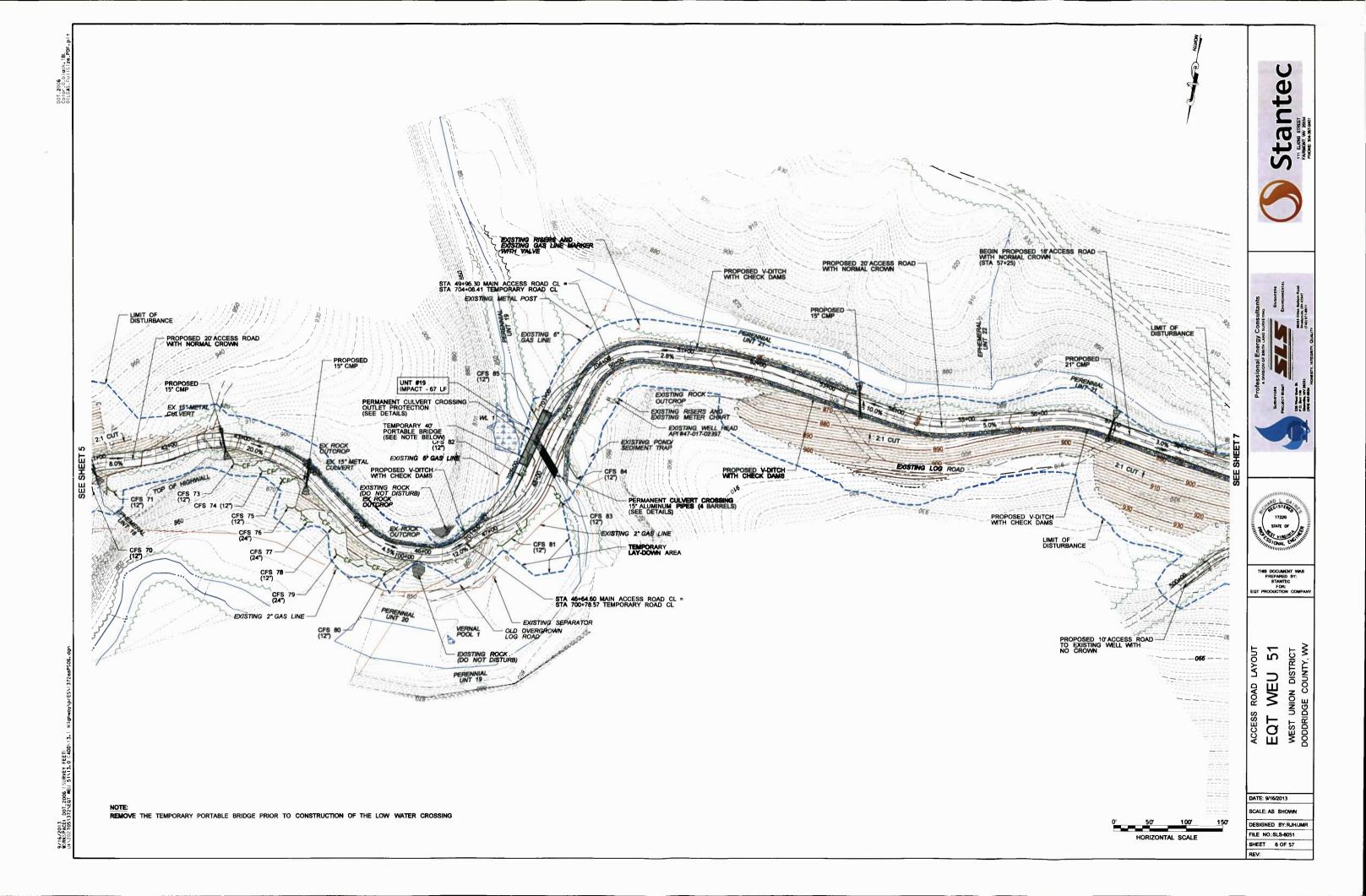
21,457

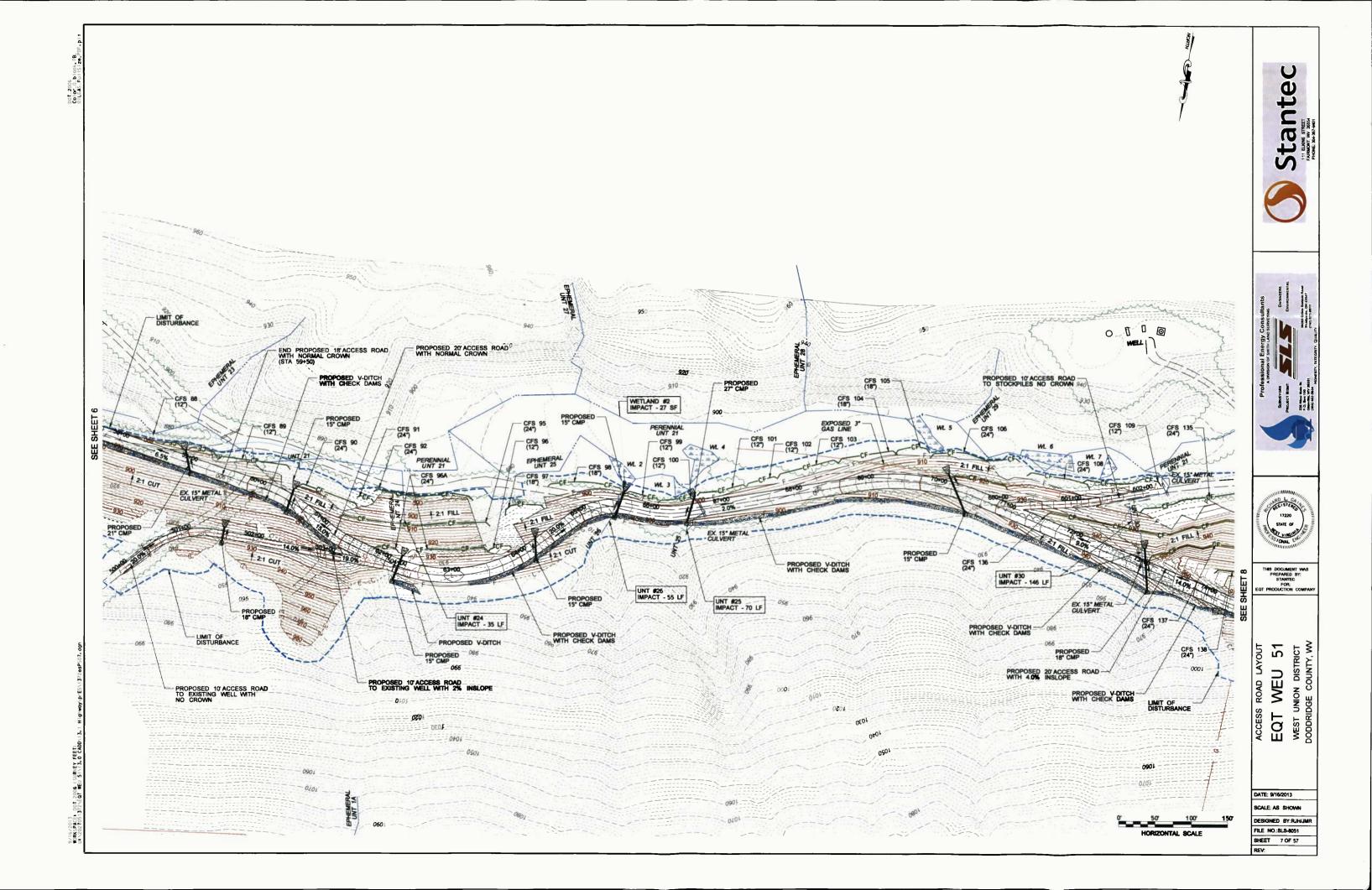
N/A N/A

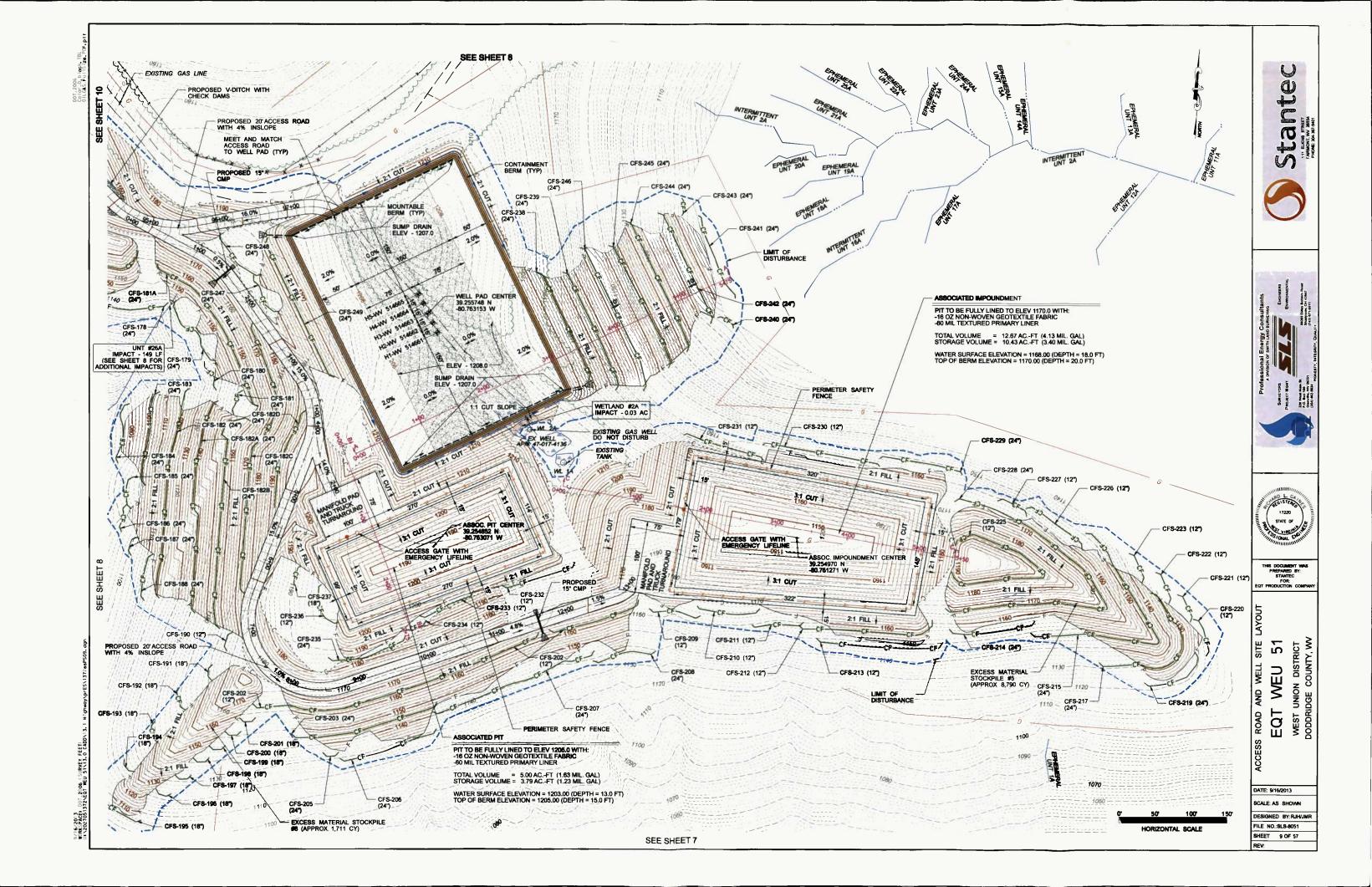

N/A


N/A

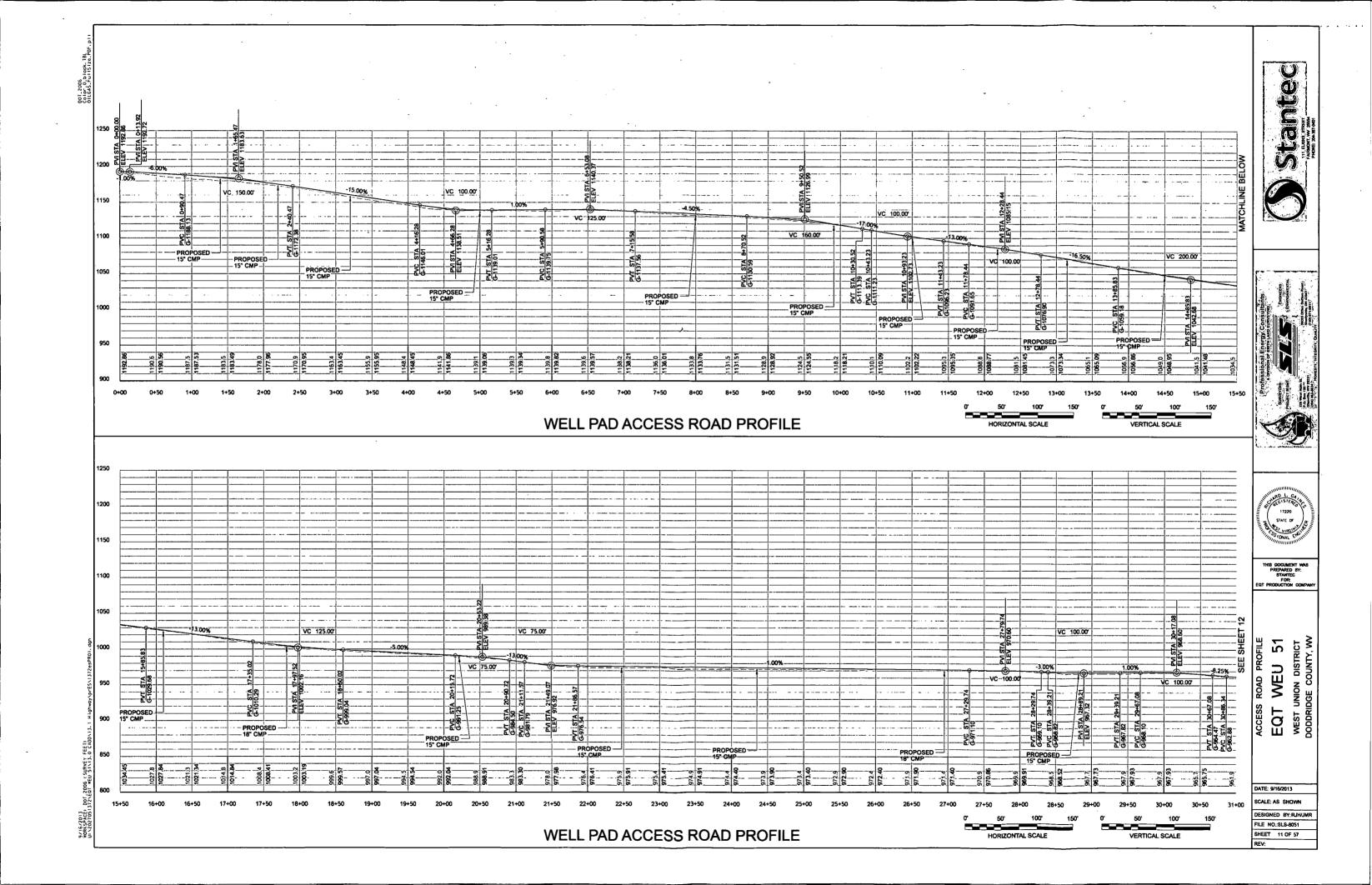
N/A

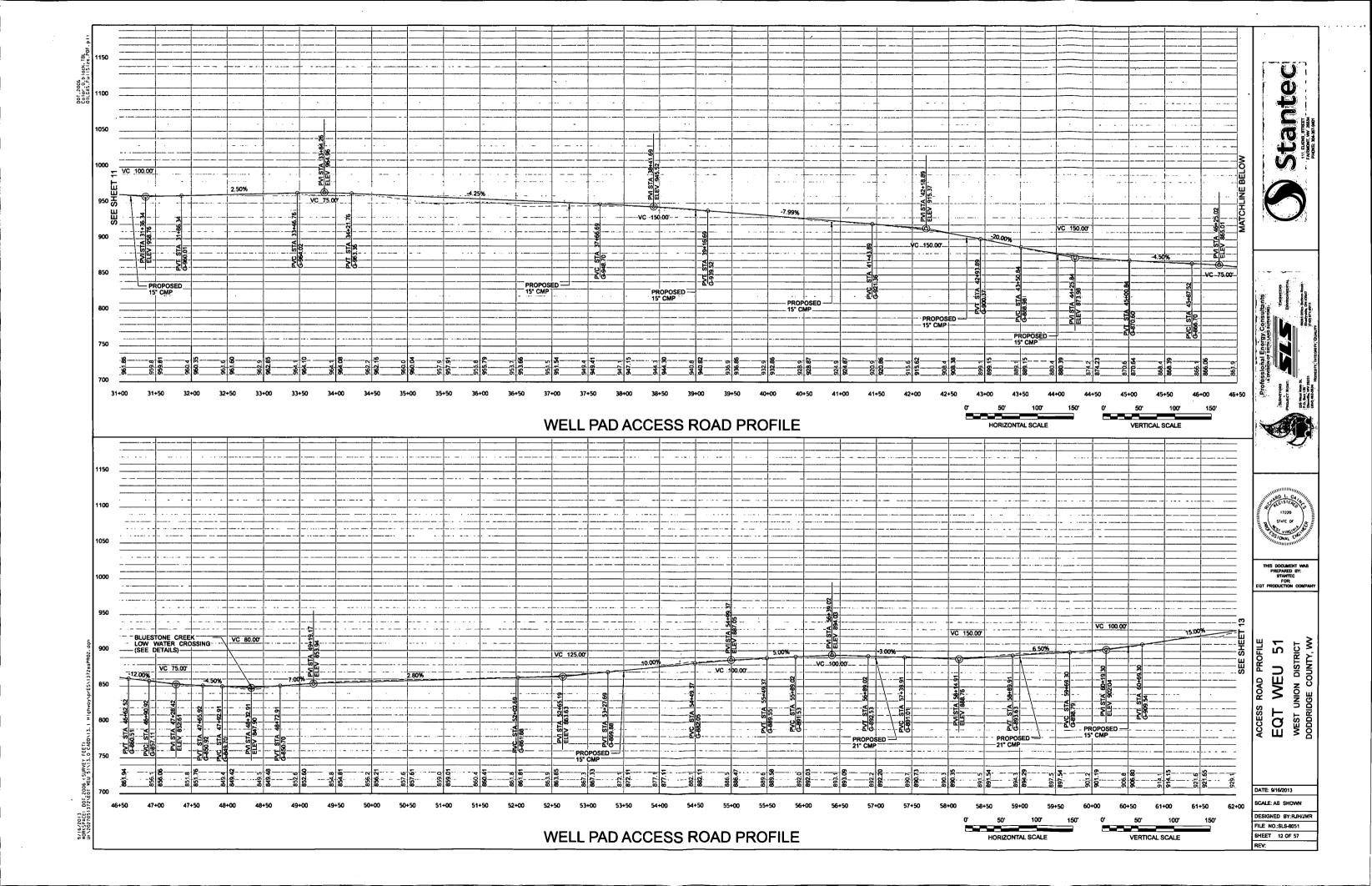

EXCESS MATERIAL STOCKPILE # 2

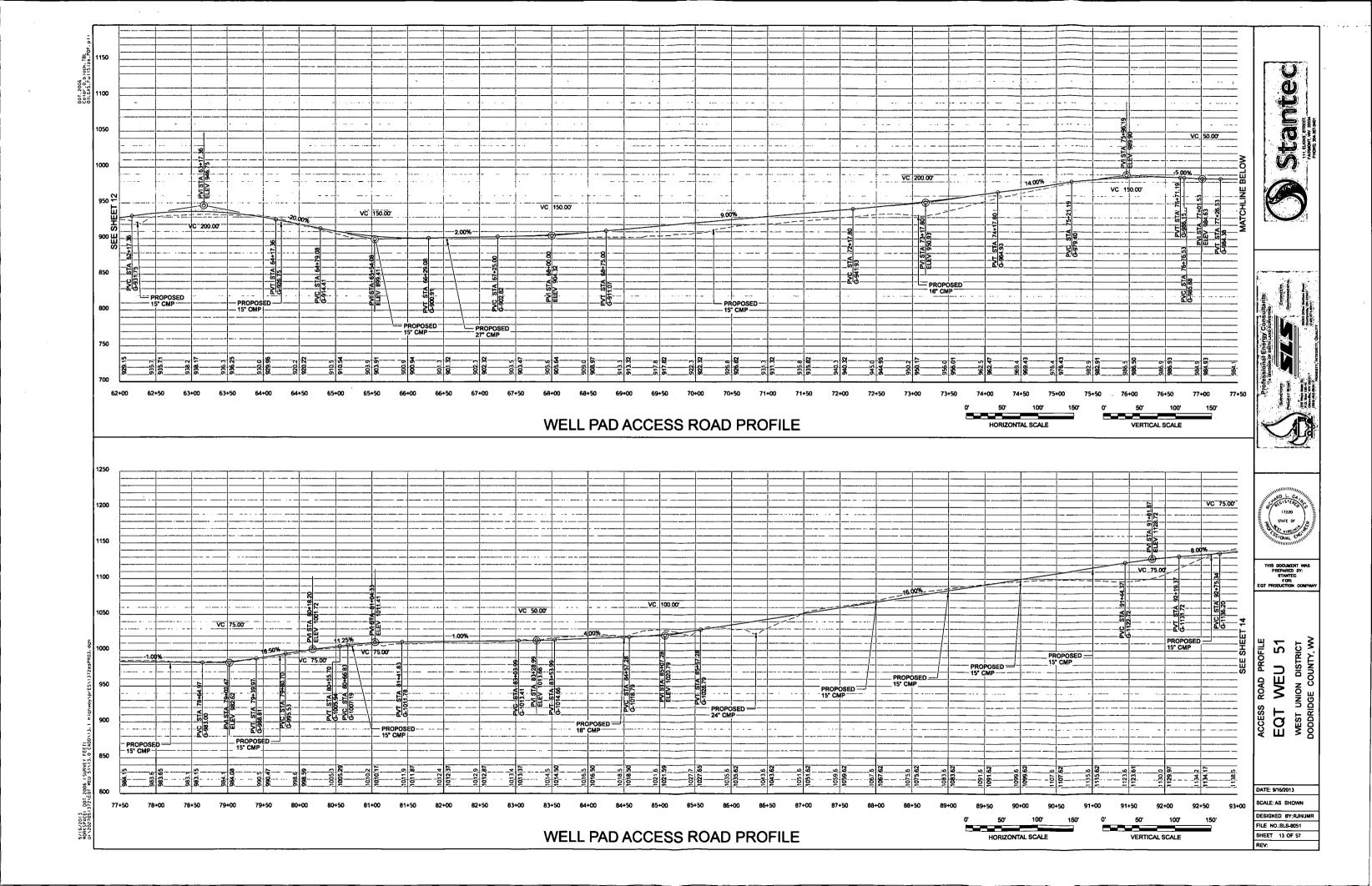

SSOCIATED IMPOUNDMENT 80,982 1,503 79,479 0

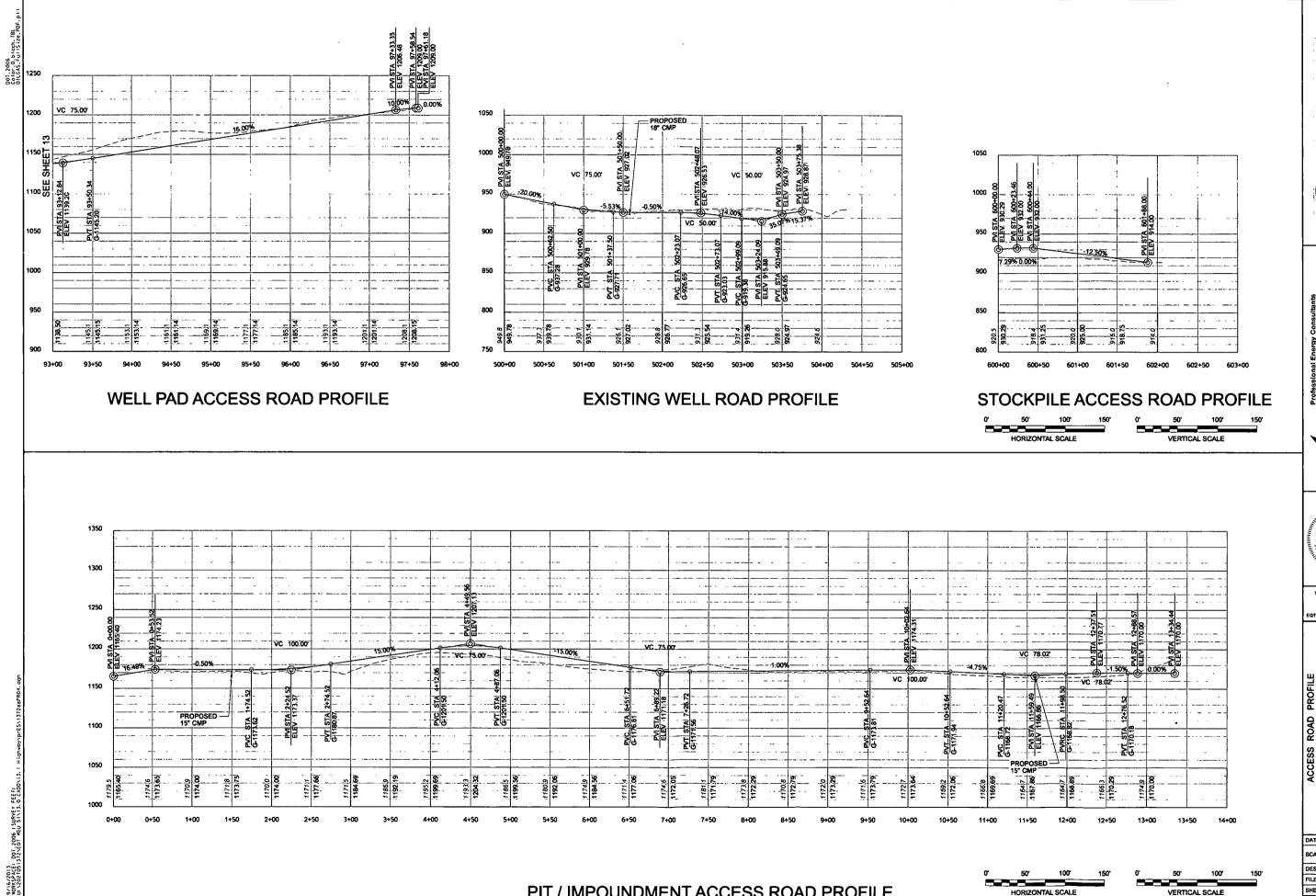


Stantec




ROAD AND WELL SITE LAYOUT EQT WEU 51

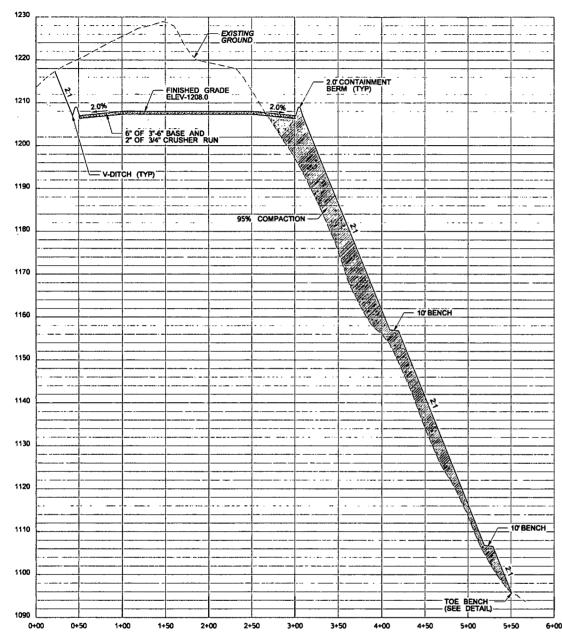

DATE: 9/16/2013 SCALE: AS SHOWN DESIGNED BY:RJH/JMR FILE NO.:SLS-8051


SHEET 10 OF 57

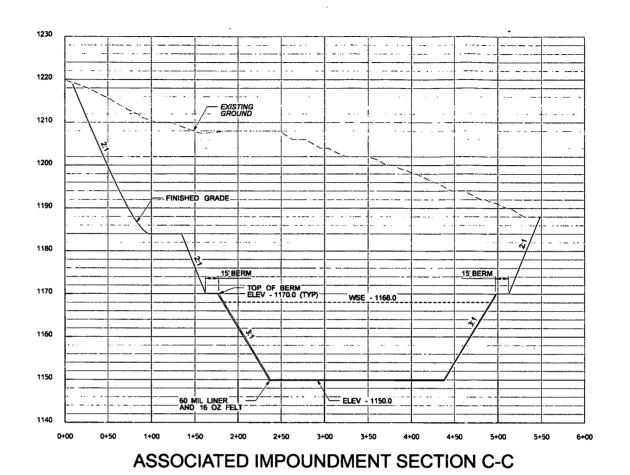
WEST UNION DISTRICT DODDRIDGE COUNTY, WV

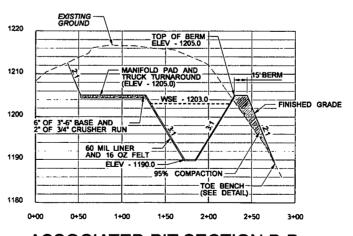
Stantec

ACCESS ROAD PROFILE


EQT WEU 51

WEST UNION DISTRICT
DODDRINGE COUNTY, WV


DATE: 9/16/2013

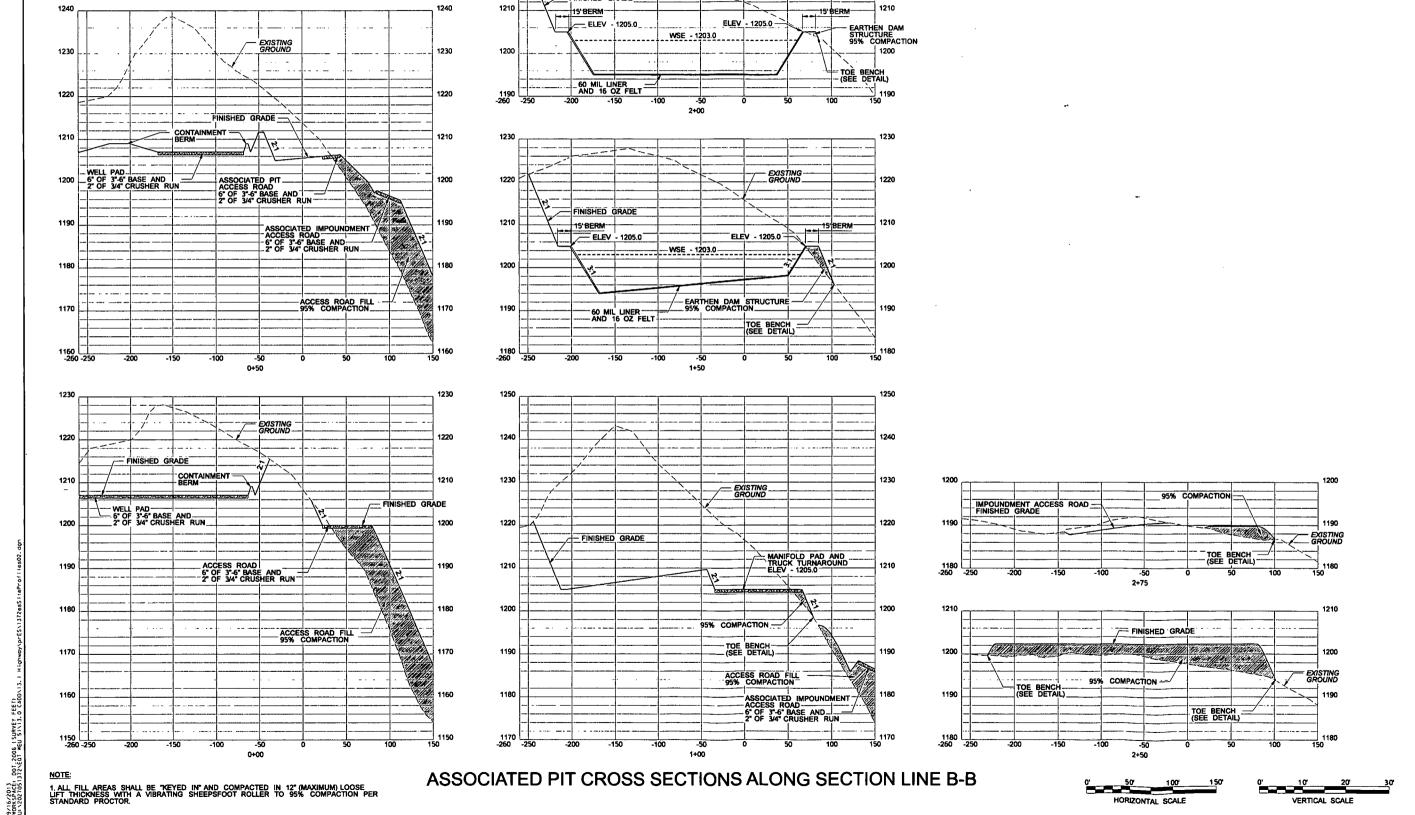

SCALE: AS SHOW

DESIGNED BY: RJH/JM FILE NO.:SLS-8051 SHEET 14 OF 57

WELL PAD CROSS SECTION A-A

ASSOCIATED PIT SECTION B-B

DATE: 9/16/2013


WELL PAD, ASSOCIATED PIT, AND ASSOCIATED IMPOUNDMENT SECTIONS EQT WEU 51

SCALE: AS SHOWN

Stantec HELDER PRESE

FILE NO.:SLS-8051 SHEET 15 OF 57

1. ALL FILL AREAS SHALL BE TKEYED IN AND COMPACTED IN 12' (MAXIMUM) LOOSE LIFT THICKNESS WITH A VIBRATING SHEEPSFOOT ROLLER TO 95% COMPACTION PER STANDARD PROCTOR

ASSOCIATED PIT CROSS SECTIONS ALONG SECTION LINE B-B

Stantec

WELL PAD, ASSOCIATED PIT, AND ASSOCIATED IMPOUNDMENT SECTIONS EQT WEU 51 DATE: 9/16/2013

SCALE: AS SHOWN

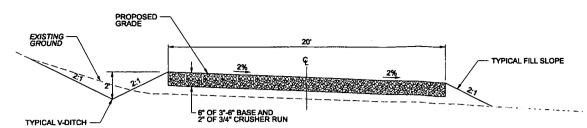
17220 STATE OF

THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: QT PRODUCTION COMPA

DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 16 OF 57

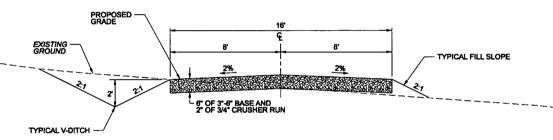
VERTICAL SCALE

HORIZONTAL SCALE

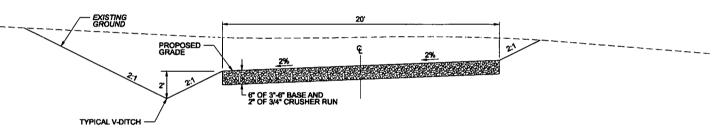

WEST UNION DISTRICT DODDRIDGE COUNTY, WV

SHEET 17 OF 57

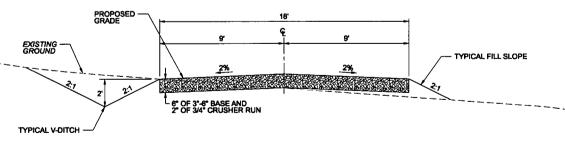
LILLIARO L CO 17220


Stanitec

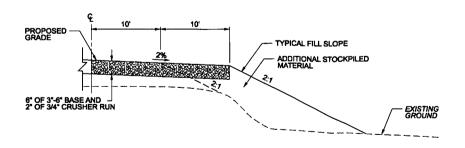
MAIN ACCESS ROAD TYPICAL SECTION - CROWNED


MAIN ACCESS ROAD TYPICAL SECTION - INSLOPED RIGHT

STA 8+00 TO STA 12+50 STA 41+15 TO STA 46+75 STA 73+25 TO STA 92+50


MAIN ACCESS ROAD TYPICAL SECTION - CROWNED

NOT TO SCALE STA 30+75 TO STA 32+25


MAIN ACCESS ROAD TYPICAL SECTION - INSLOPED LEFT

NOT TO SCALE STA 94+50 TO STA 98+00

MAIN ACCESS ROAD TYPICAL SECTION - CROWNED

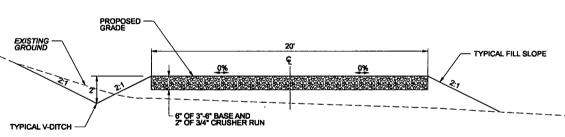
STA 57+25 TO STA 59+50

ALTERNATE FILL SECTION

NOT TO SCALE STA 34+00 TO STA 40+50 RT Stantec

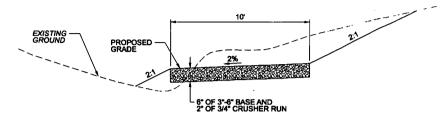
ACCESS ROAD TYPICAL SECTIONS
EQT WEU 51

DATE: 9/16/2013


SCALE: AS SHOWN

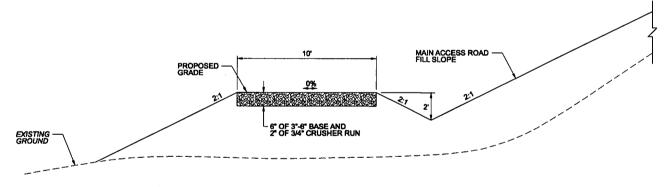
FILE NO.:SLS-8051 SHEET 18 OF 57

9/16/2013 WORKSPACE: DOT_2006 (SURVEY FEET) U:\2027051372\EQT WEU 51\13.0 CADD\


PIT/IMPOUNDMENT ACCESS ROAD - INSLOPED LEFT

STA 1+50 TO STA 5+00 STA 6+50 TO STA 13+00

PIT/IMPOUNDMENT ACCESS ROAD


STA 0+00 TO STA 1+50 (TRANSITION FROM MAIN ACCESS ROAD) STA 5+00 TO STA 6+50

EXISTING WELL ACCESS ROAD

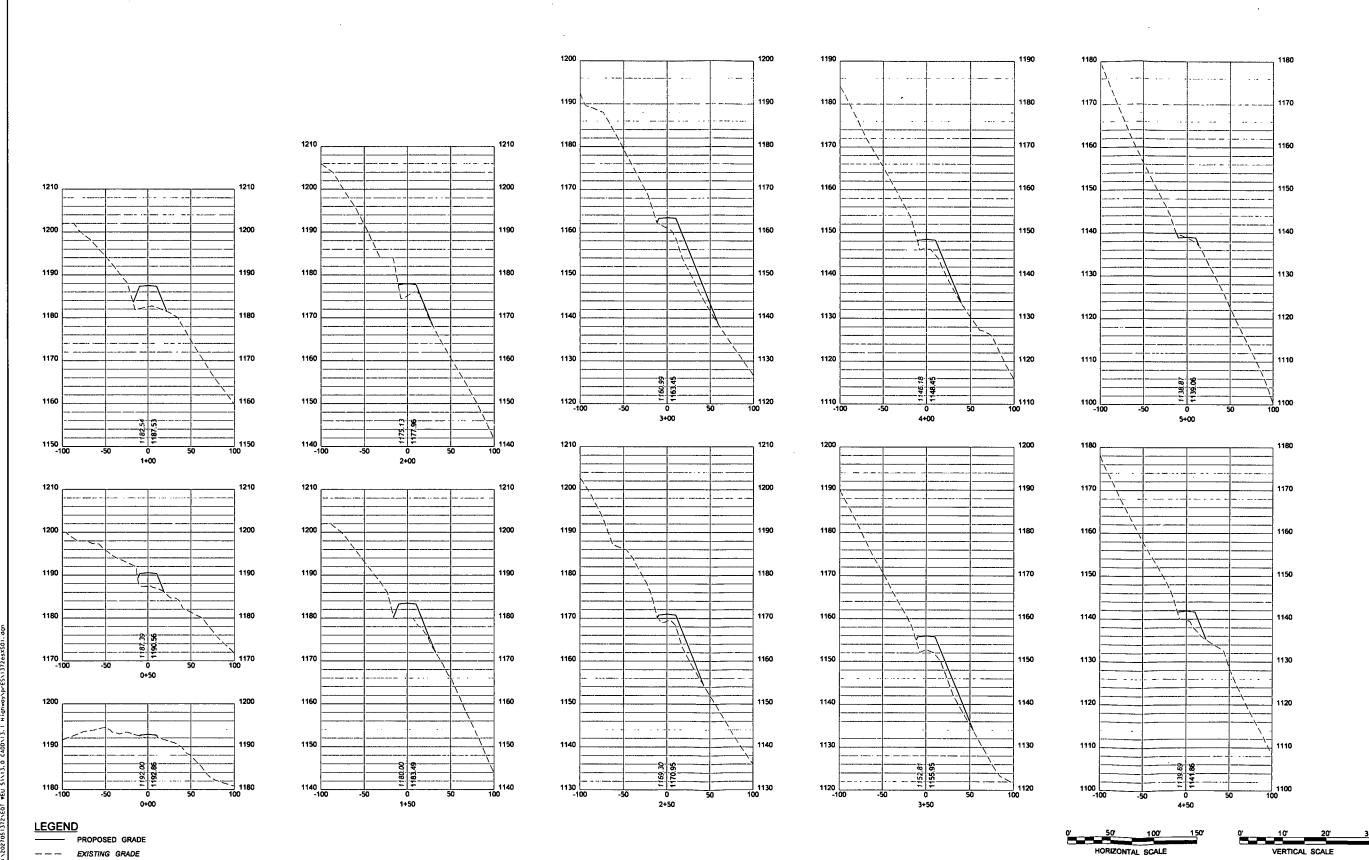
STA 500+00 TO STA 504+38

NOTE: STATION LIMITS PROVIDED ABOVE ARE APPROXIMATE AND CAN BE FIELD ADJUSTED AS DIRECTED BY THE CONSTRUCTION INSPECTOR.

ACCESS ROAD TO STOCKPILES

NOT TO SCALE STA 600+00 TO STA 602+08 Stantec

EQT WEU 51
WEST UNION DISTRICT
DODDRINGE COUNTY, WV


ACCESS ROAD TYPICAL SECTIONS

DATE: 9/16/2013

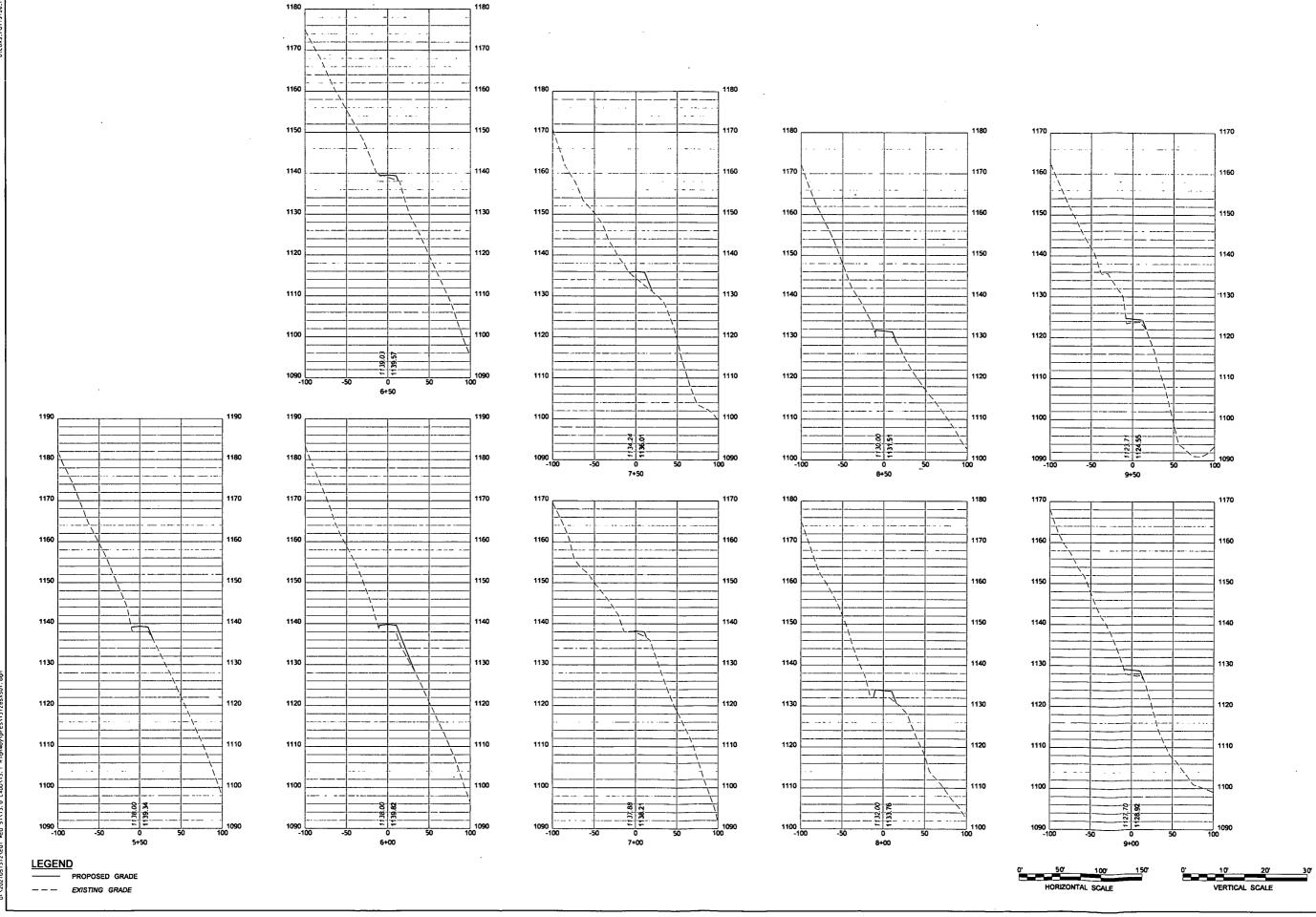
SCALE: AS SHOWN DESIGNED BY:RJH/JMR

FILE NO.:SLS-8051

9/16/2013 WORKSPACE: DOT_2006 ISURVEY FEET) U:\2027051372\EQT WEU 51\13.0 CAD

Stantec Million Stantec

TATE OF STATE OF STAT


THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: EQT PRODUCTION COMPAN

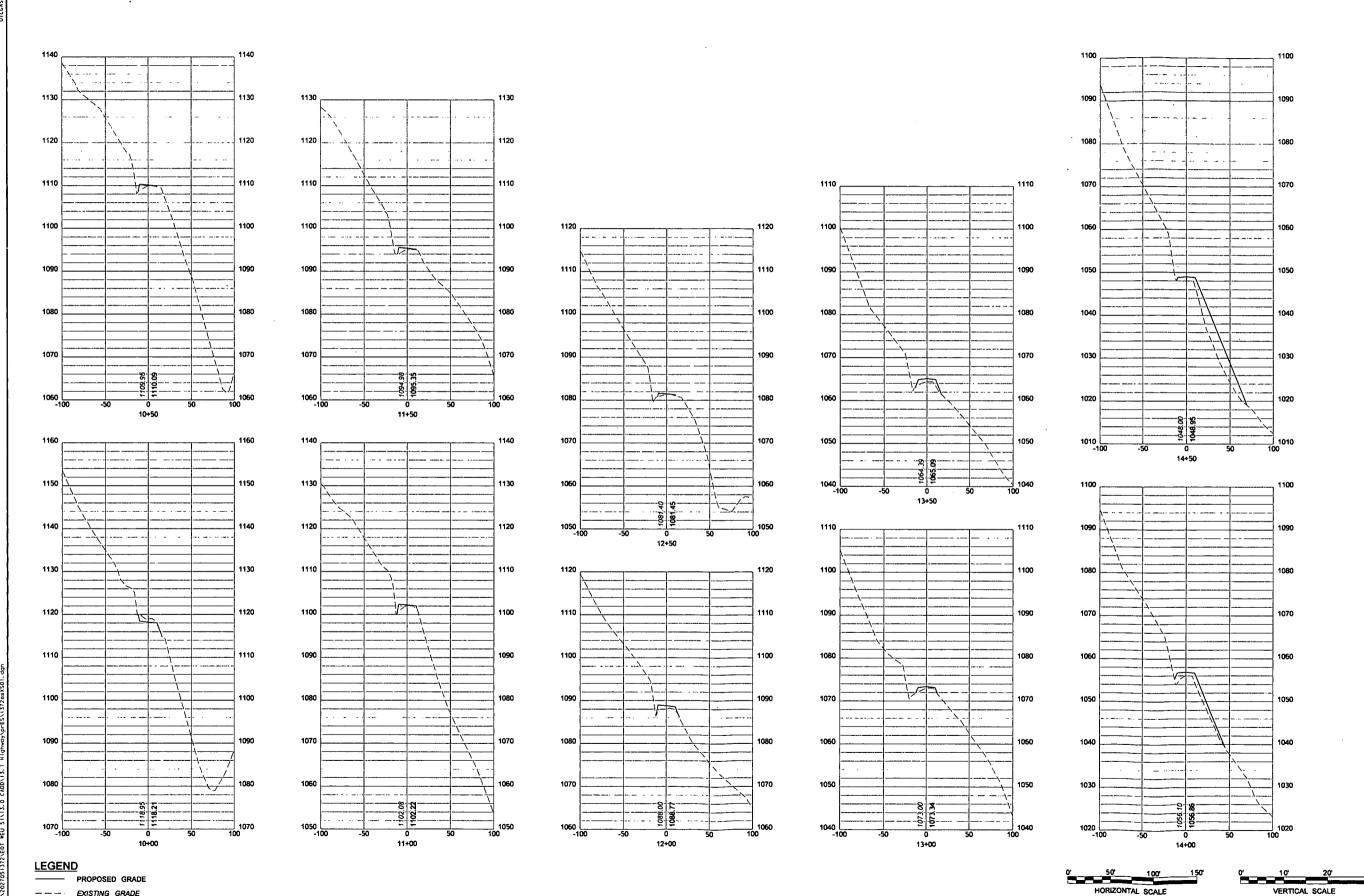

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRINGE COUNTY, WV

DATE: 9/16/2013

DESIGNED BY:RJH/JMR

FILE NO.: SLS-8051 SHEET 20 OF 57

17220 STATE OF


THIS DOCUMENT WAS PREPARED BY:
STANTEC FOREQT PRODUCTION COMPA

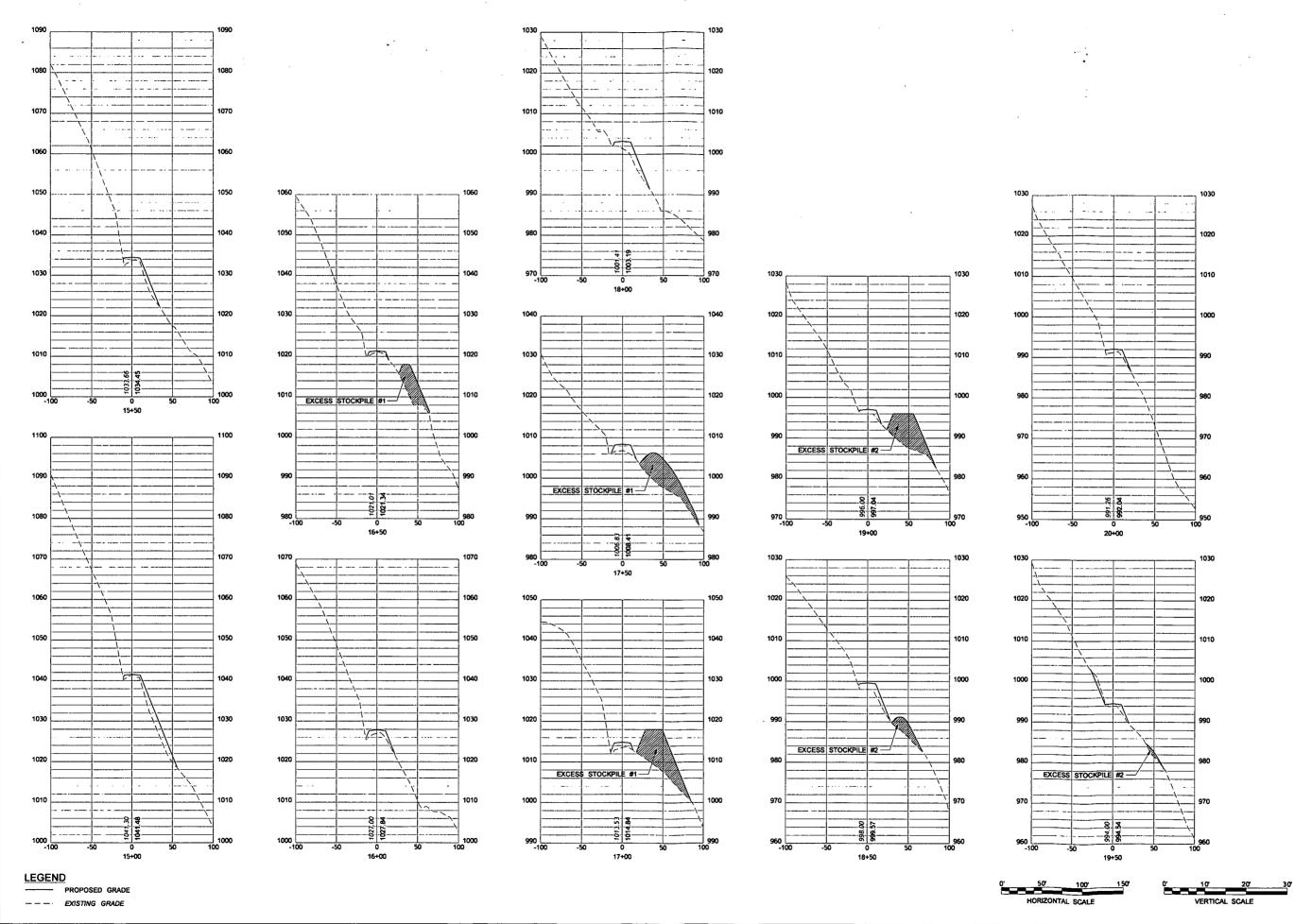
MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013 SCALE: AS SHOWN

DESIGNED BY:RJH/JMR

FILE NO.:SLS-8051 SHEET 21 OF 57

Stantec

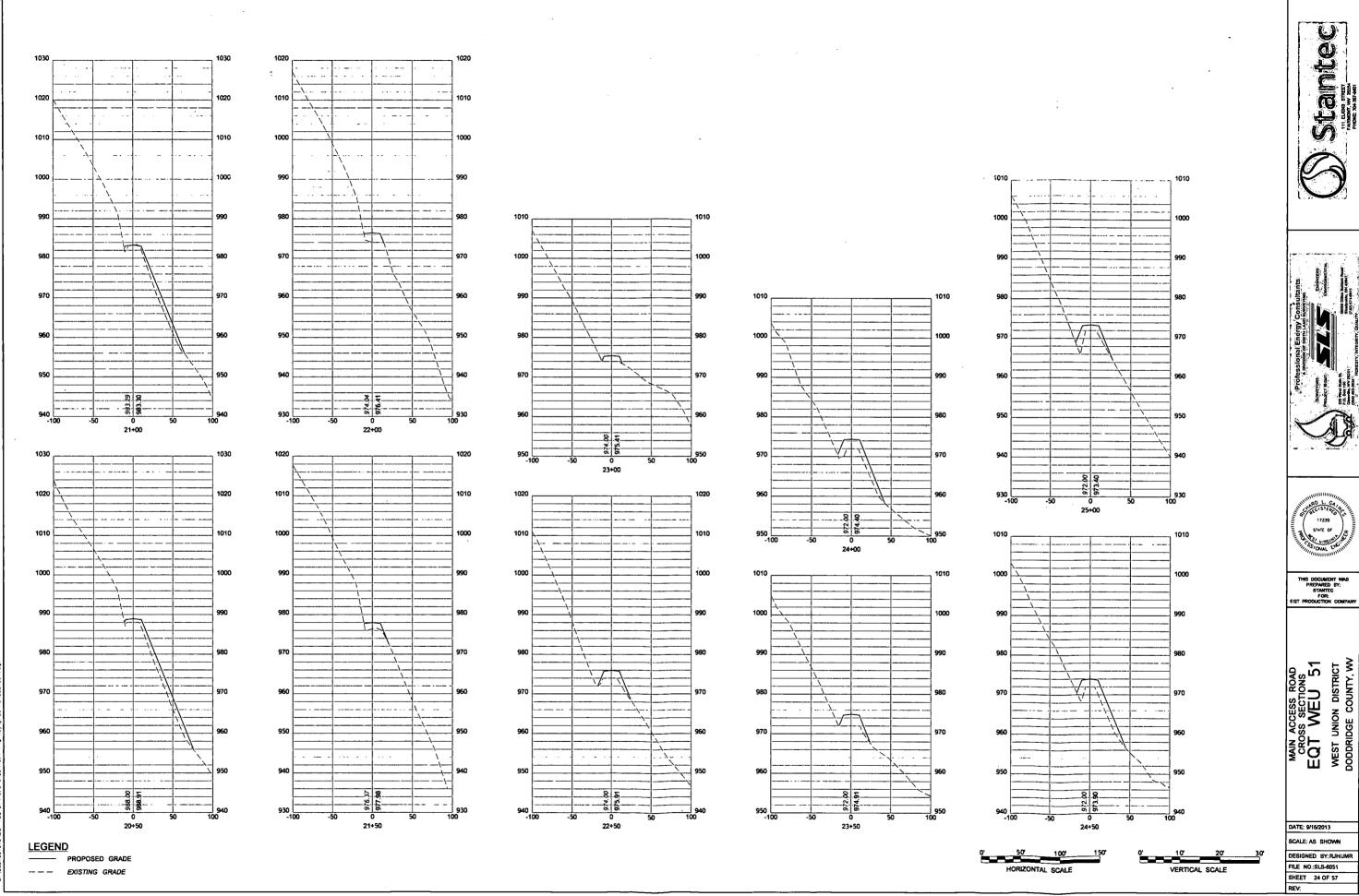

17220 STATE OF

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51
WEST UNION DISTRICT DODDRIDGE COUNTY, WV

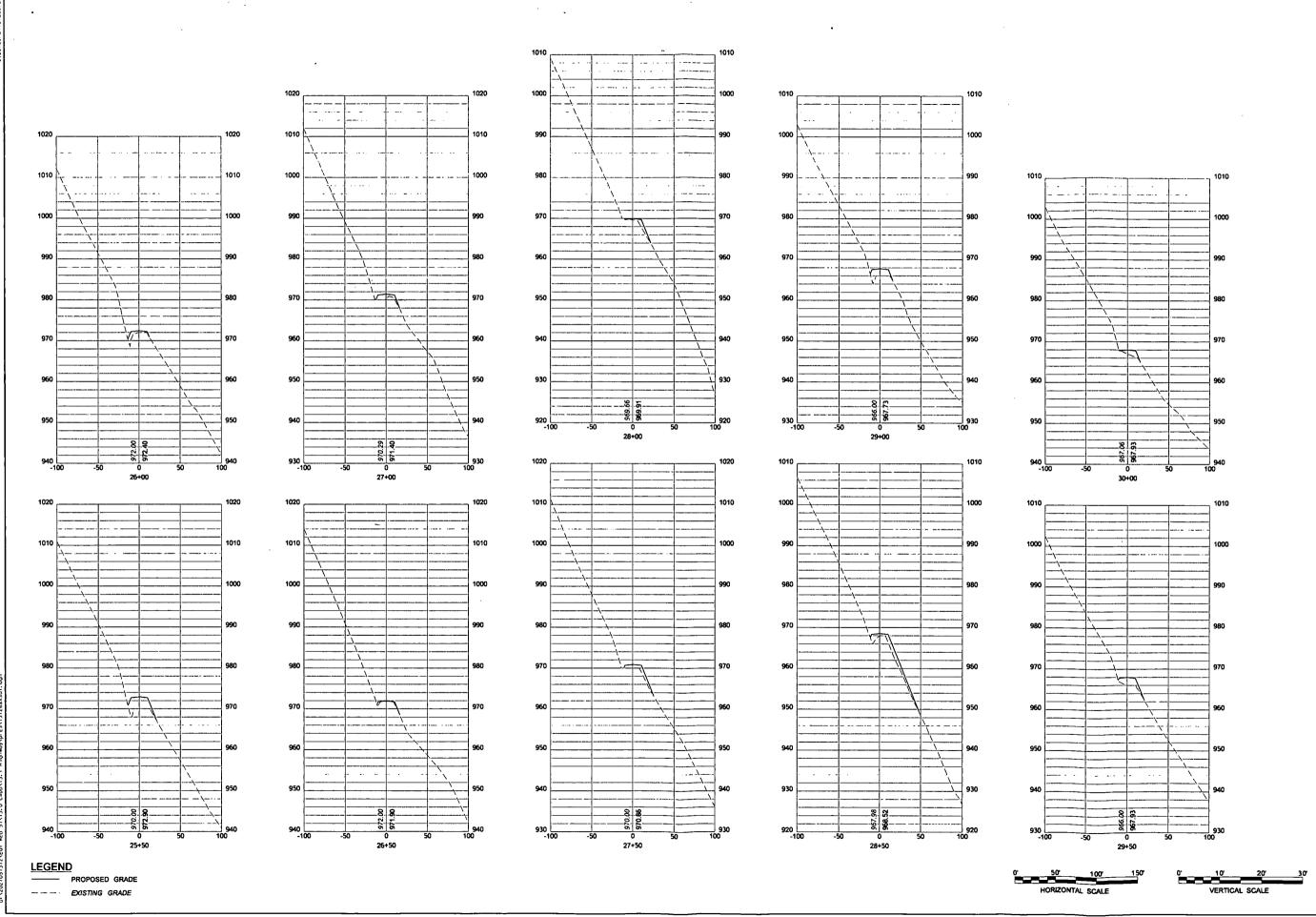
DATE: 9/16/2013 SCALE: AS SHOWN

FILE NO.:SLS-8051

SHEET 22 OF 57 REV: DOT.2006 Color.0.black.TBL OLGAS.FullSize.PDF.ptr


DATE: 9/16/2013 SCALE: AS SHOWN DESIGNED BY:RJHJJMR FILE NO.:SLS-8051 SHEET 23 OF 57 REV:

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY

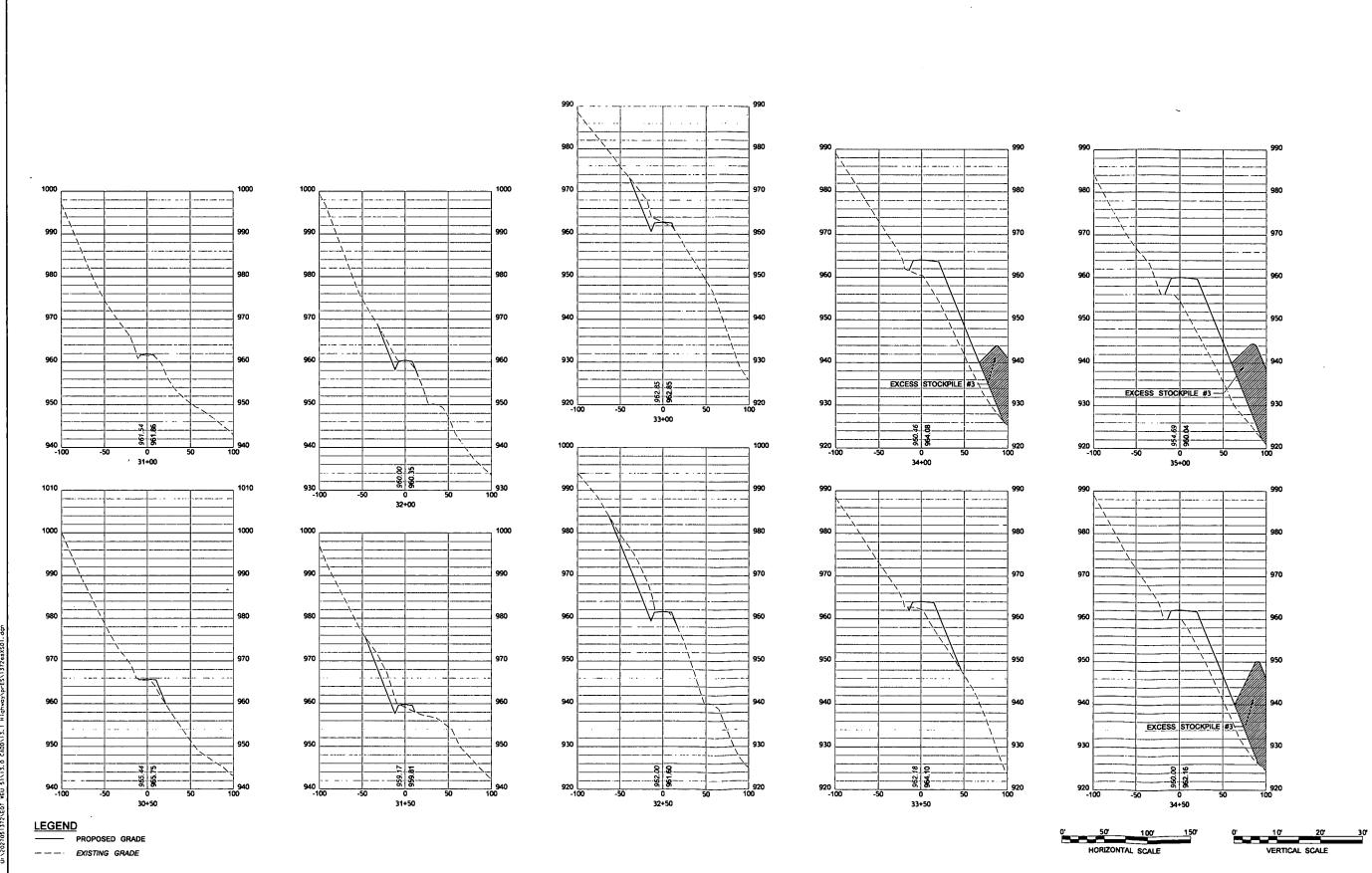


Staintec

TOTAL OF

Stantec

TO STATE OF


THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: EQT PRODUCTION COMPANY

DATE: 9/16/2013

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY

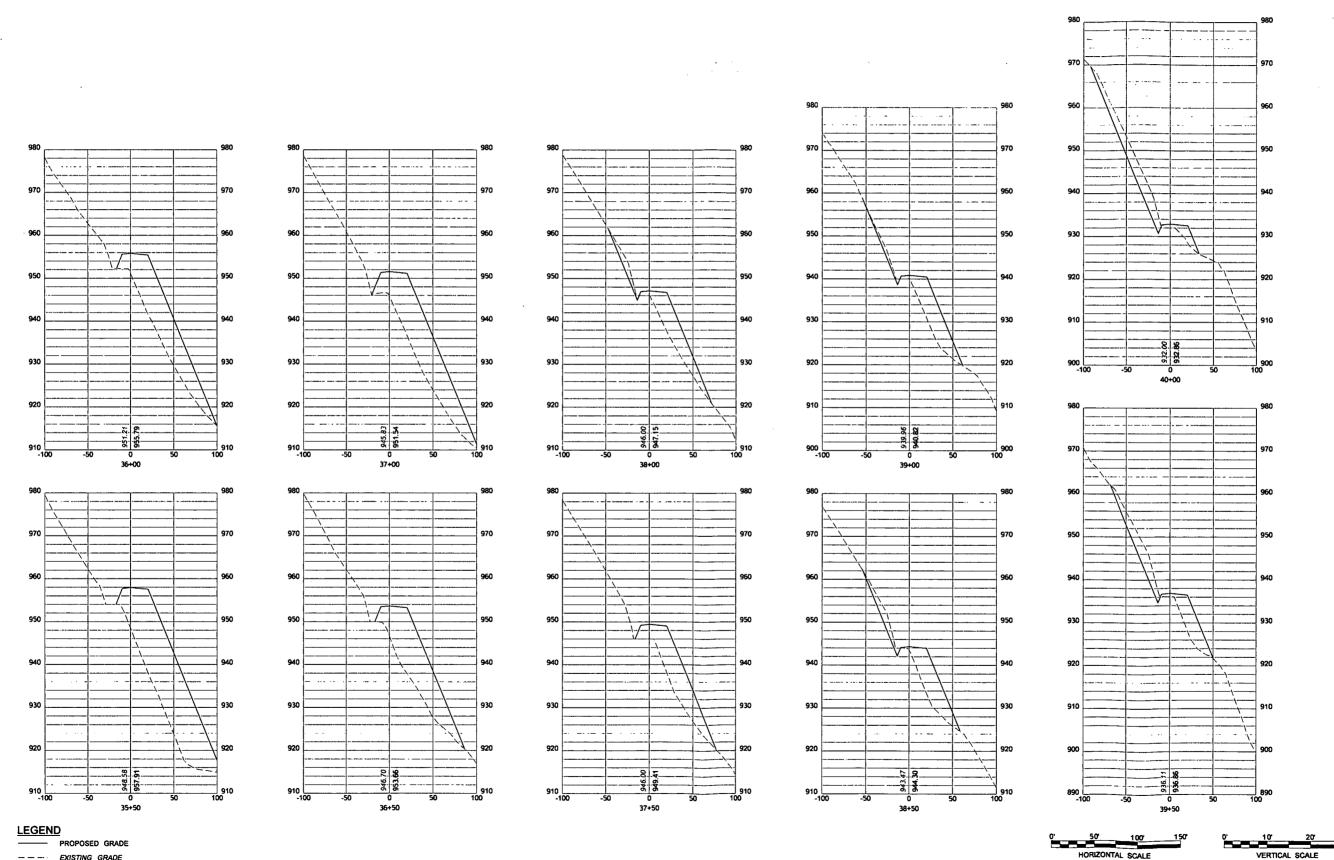
SCALE: AS SHOWN

DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 25 OF 57 REV:

THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: CT PRODUCTION COMPA

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013 SCALE: AS SHOWN


DESIGNED BY:RJH/JMR FILE NO.: SLS-8051

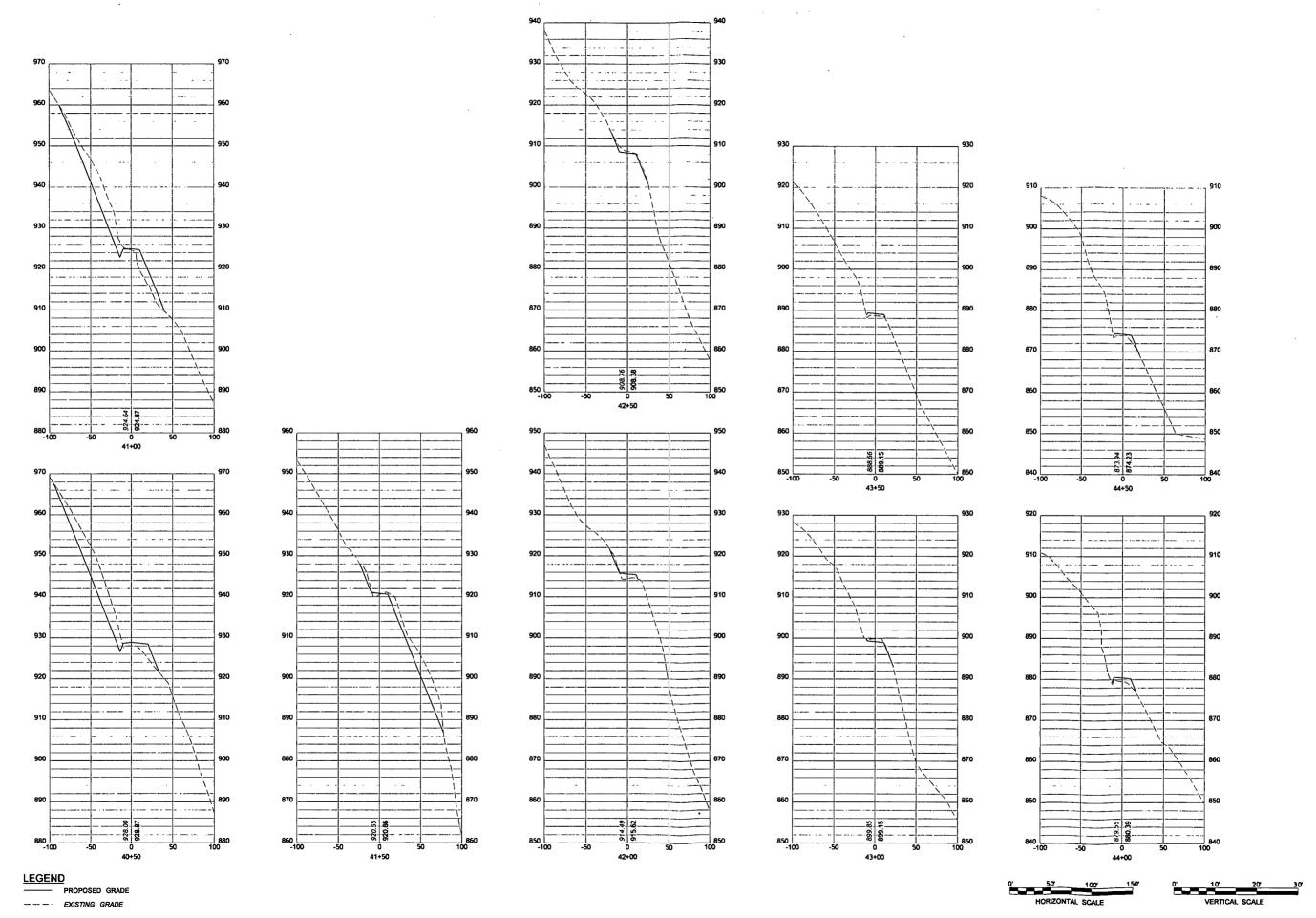
SHEET 26 OF 57

TIME OF STATE OF STAT

Stantec

TATE OF

THIS DOCUMENT WAS PREPARED BY: 8TANTEC FOR: EQT PRODUCTION COMPA

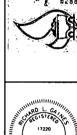


Stantec

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY

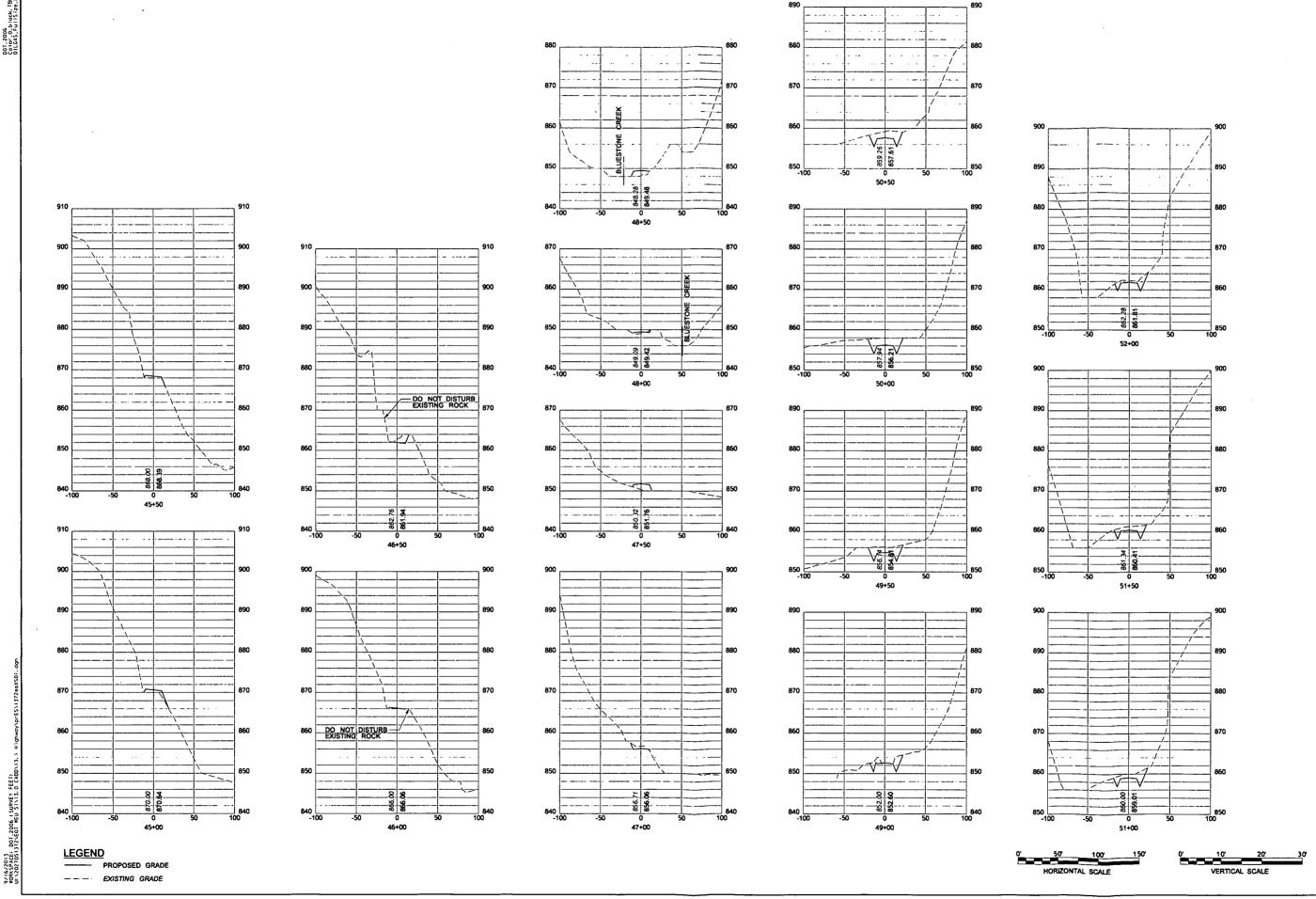
DATE: 9/16/2013

SCALE: AS SHOWN DESIGNED BY:RJH/JMR FILE NO.:SLS-8051
SHEET 27 OF 57
REV:

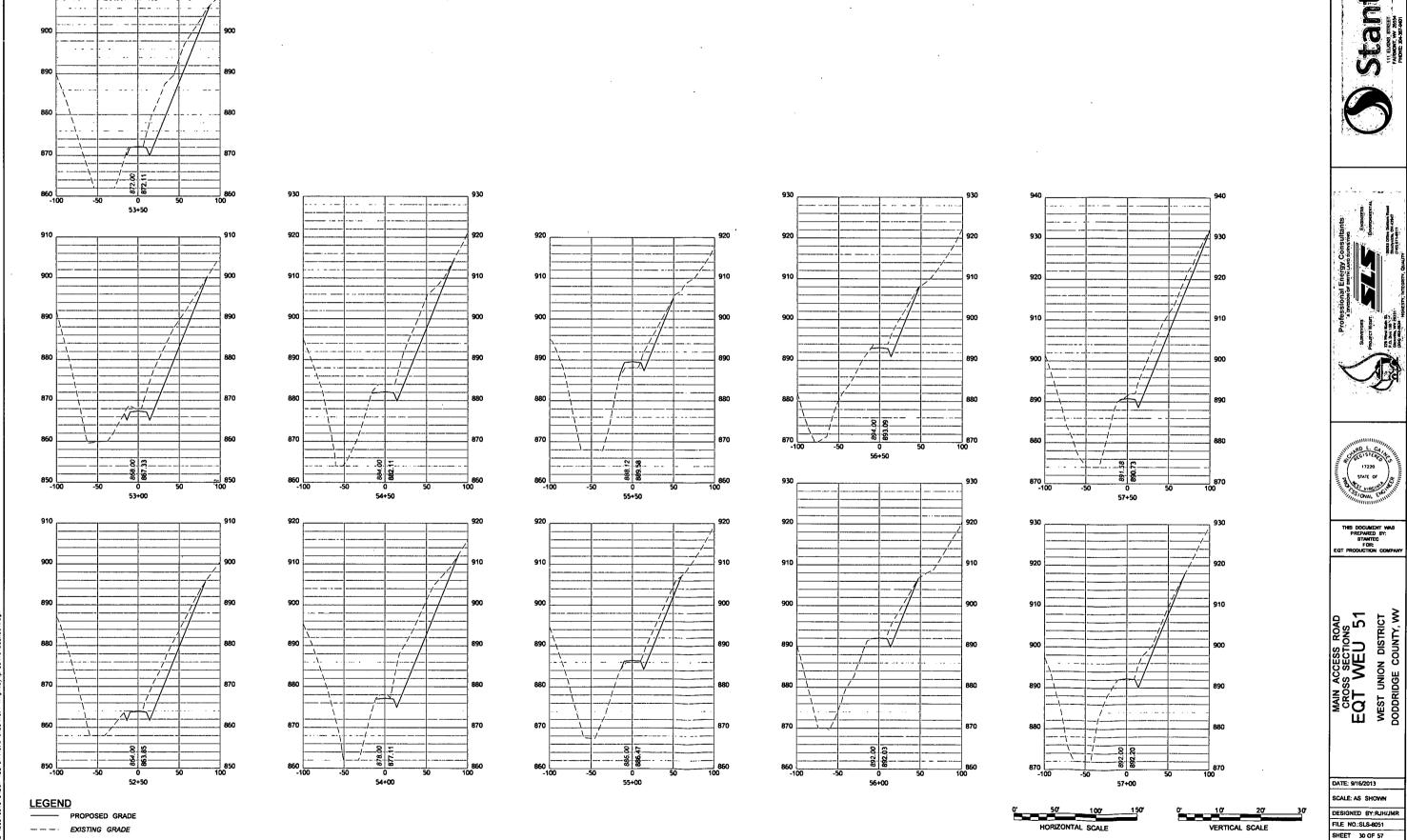


DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 28 OF 57

DATE: 9/16/2013 SCALE: AS SHOWN


MAIN ACCESS ROAD
CROSS SECTIONS
EQT WEU 51
WEST UNION DISTRICT
DODDRIDGE COUNTY, WV

STATE OF VIRGINIA THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: QT PRODUCTION COMPA



17220 STATE OF

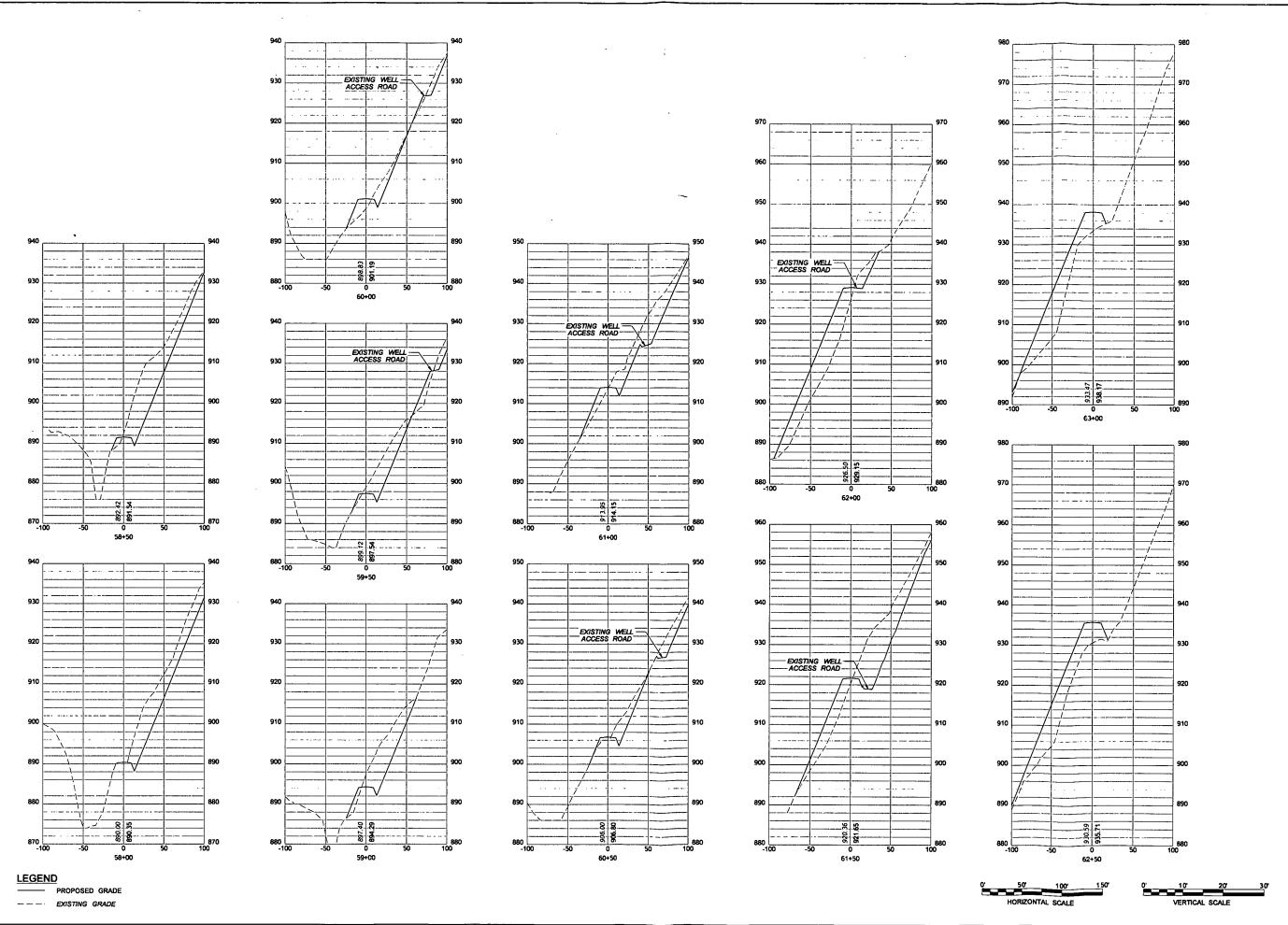
THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: GT PRODUCTION COMPA

17220 STATE OF

DATE: 9/16/2013 SCALE: AS SHOWN

FILE NO.:SLS-8051

SHEET 30 OF 57



Professional Energy Consultants

A prosessional Energy Consultants

A professional Energy Consultants

Professional Energy Consultan

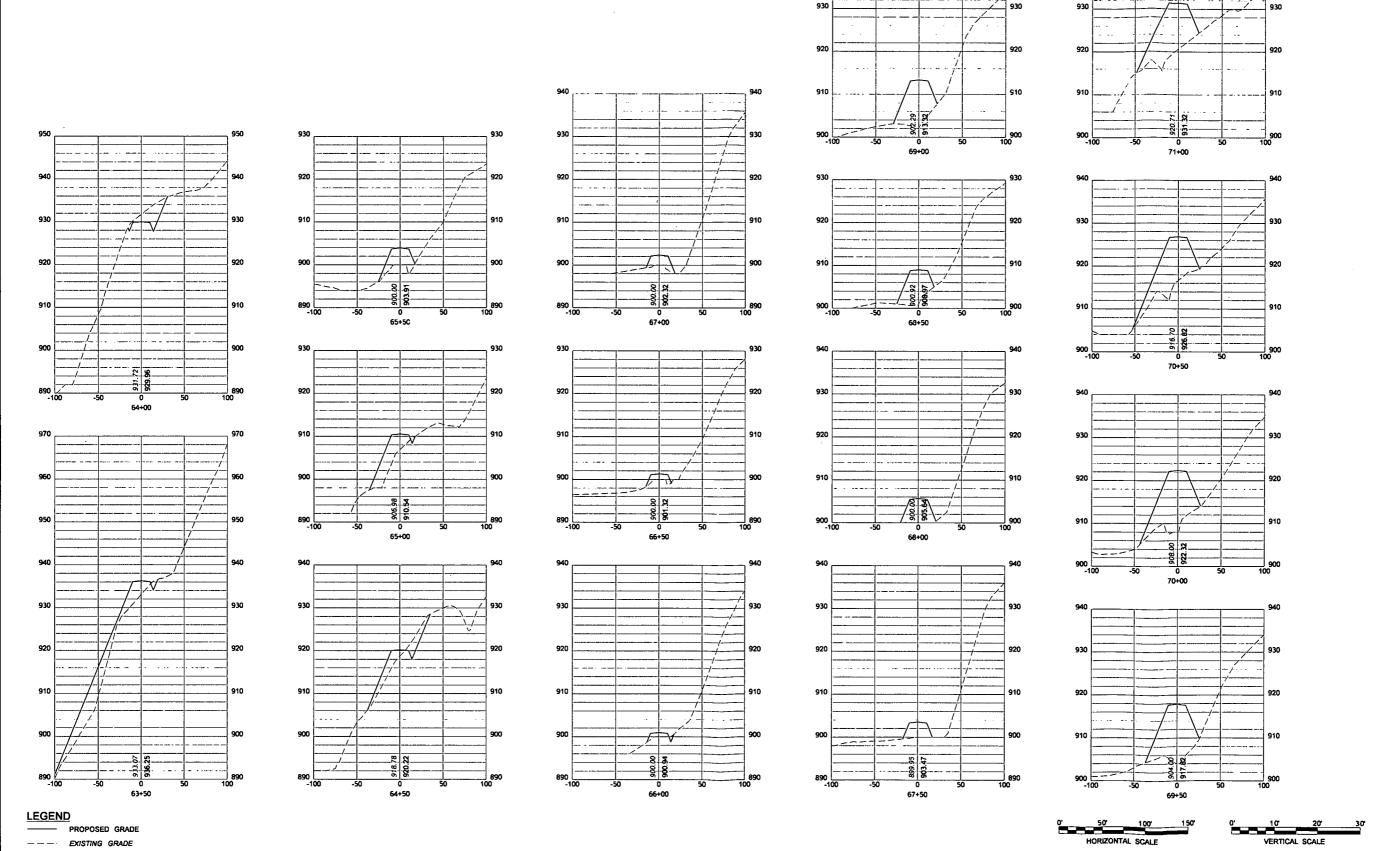
THIS COCUMENT WAS PREPARED BY:
8TANTEC FOR:
EQT PRODUCTION COMPA

LIGHT ROL COM

17220 STATE OF

Stantec

MAIN ACCESS ROAD CROSS SECTIONS

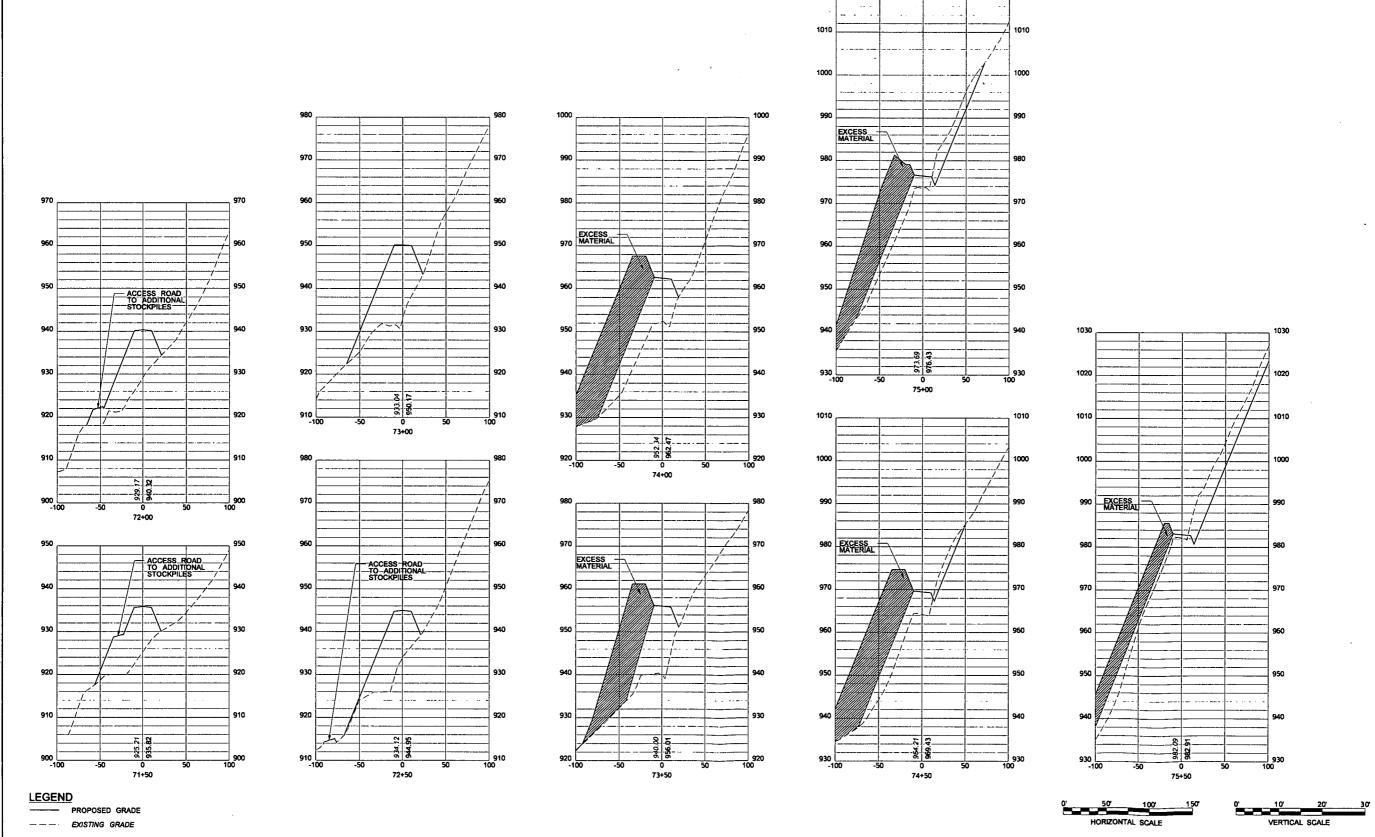

EQT WEU 51

WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013

SCALE: AS SHOWN DESIGNED BY:RJH/JMR

FILE NO.:SLS-8051 SHEET 31 OF 57

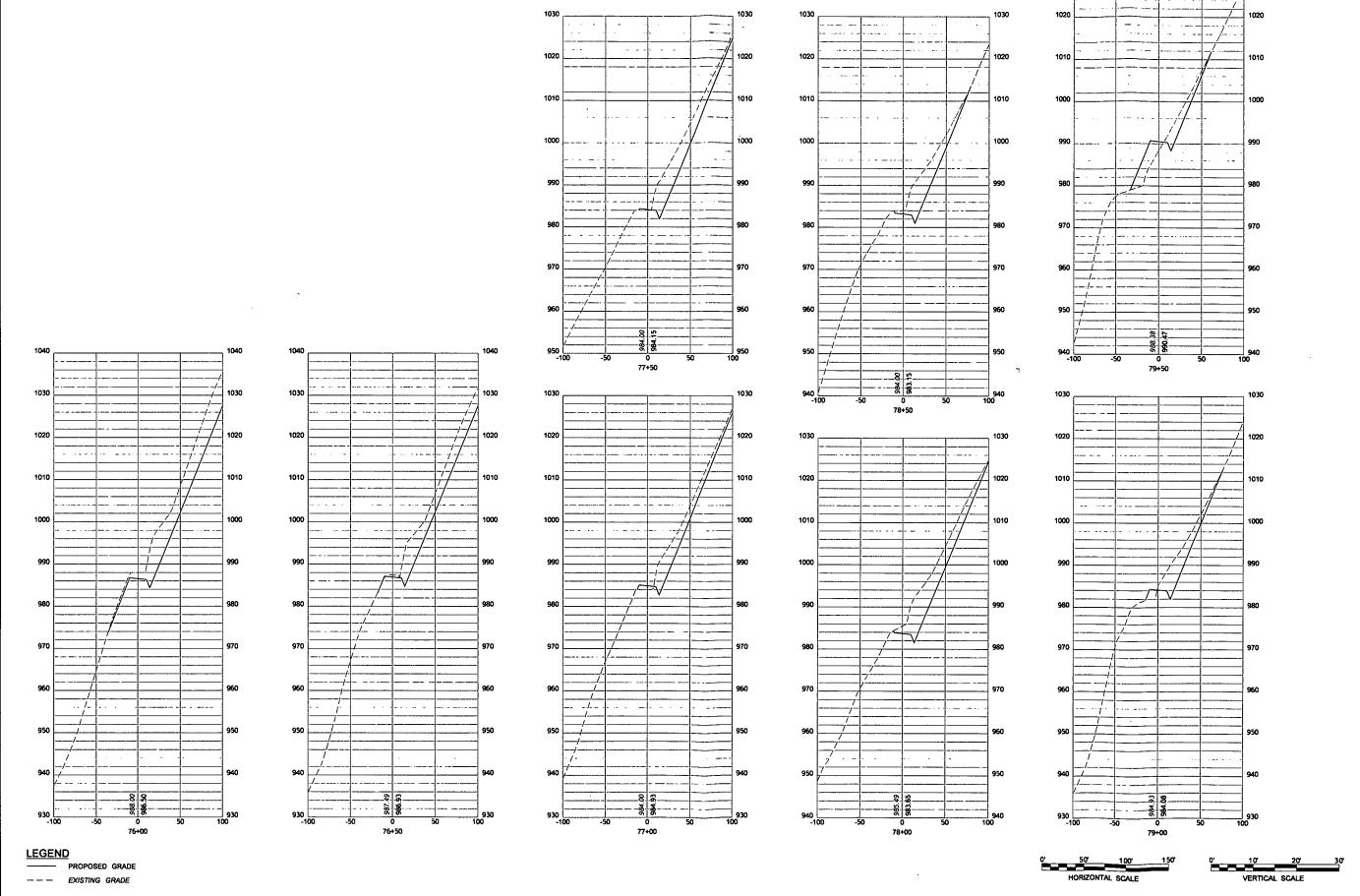

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY

THIS DOCUMENT WAS PREPARED BY:
STANTEC FOR:
EQT PRODUCTION COMPA

Professional Energy, Consultants, Services of arms, Justinity Consultants, Services of arms, Justinity, Services of ar

TO STATE OF

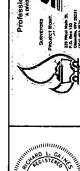
THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: EQT PRODUCTION COMPA

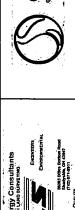

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY

DATE: 9/16/2013 SCALE: AS SHOWN

DESIGNED BY:RJH/JMR

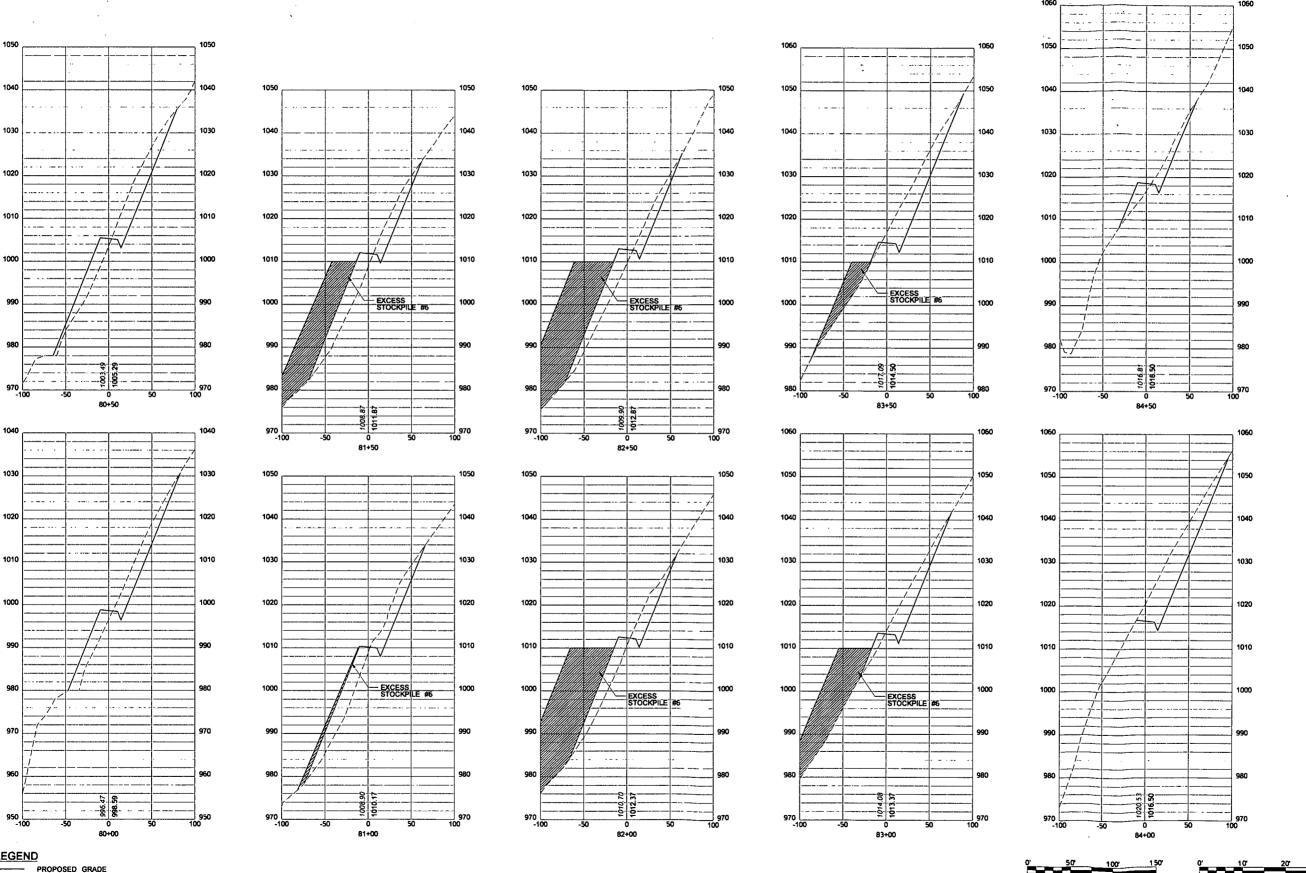
FILE NO.:SLS-8051 SHEET 33 OF 57


DESIGNED BY:RJH/JMR FILE NO.:SLS-8051


DATE: 9/16/2013 SCALE: AS SHOWN

SHEET 34 OF 57

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY


17220 STATE OF THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: EQT PRODUCTION COMPAN

1030

9716/2013 MORKSPACE: DOT.2006 (SURVEY FEET) U:\2027051372\EQT WEU 51\13.0 CADO\

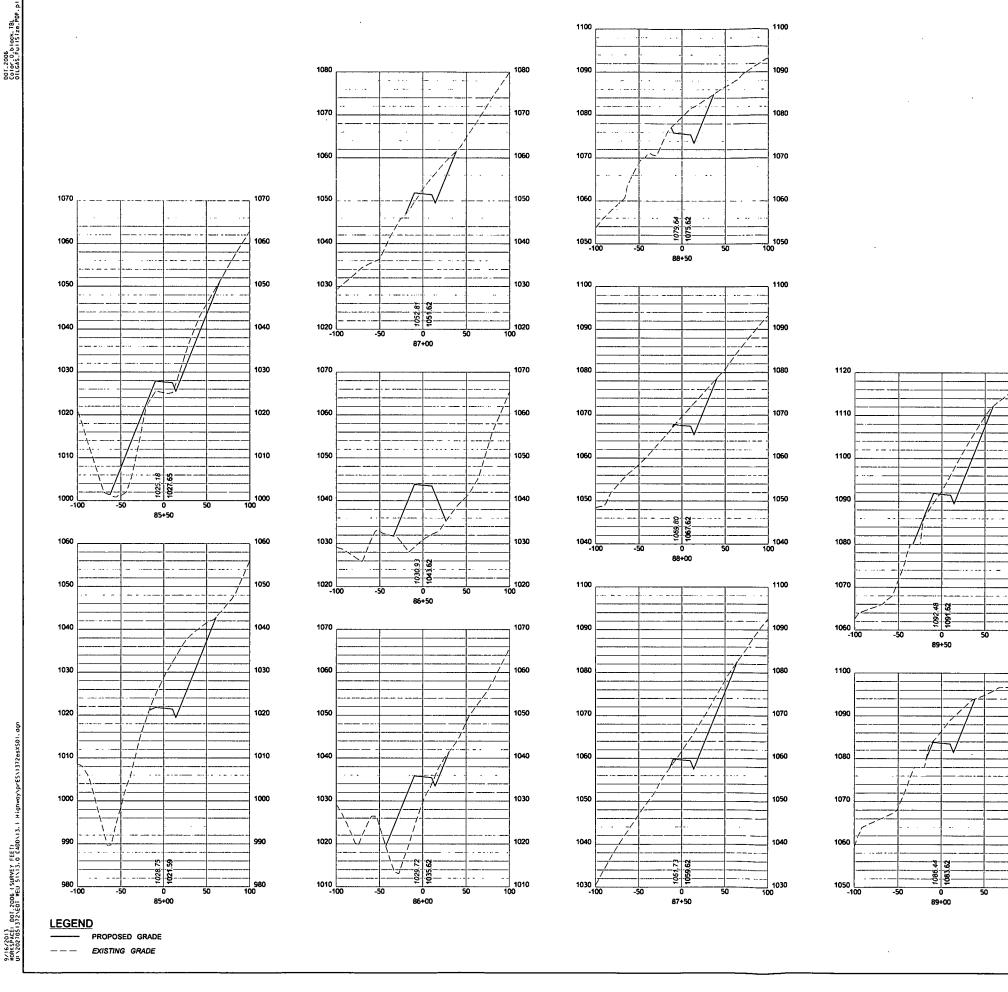
LEGEND

---- EXISTING GRADE

DATE: 9/16/2013

VERTICAL SCALE

HORIZONTAL SCALE


SCALE: AS SHOWN DESIGNED BY:RJH/JMR

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WY

17220 STATE OF

Stantec

FILE NO.:SLS-8051 SHEET 35 OF 57

Professional Energy Cons

Stantec

1150

1130

1120

1100

1130

1120

1100

1080

1070

HORIZONTAL SCALE

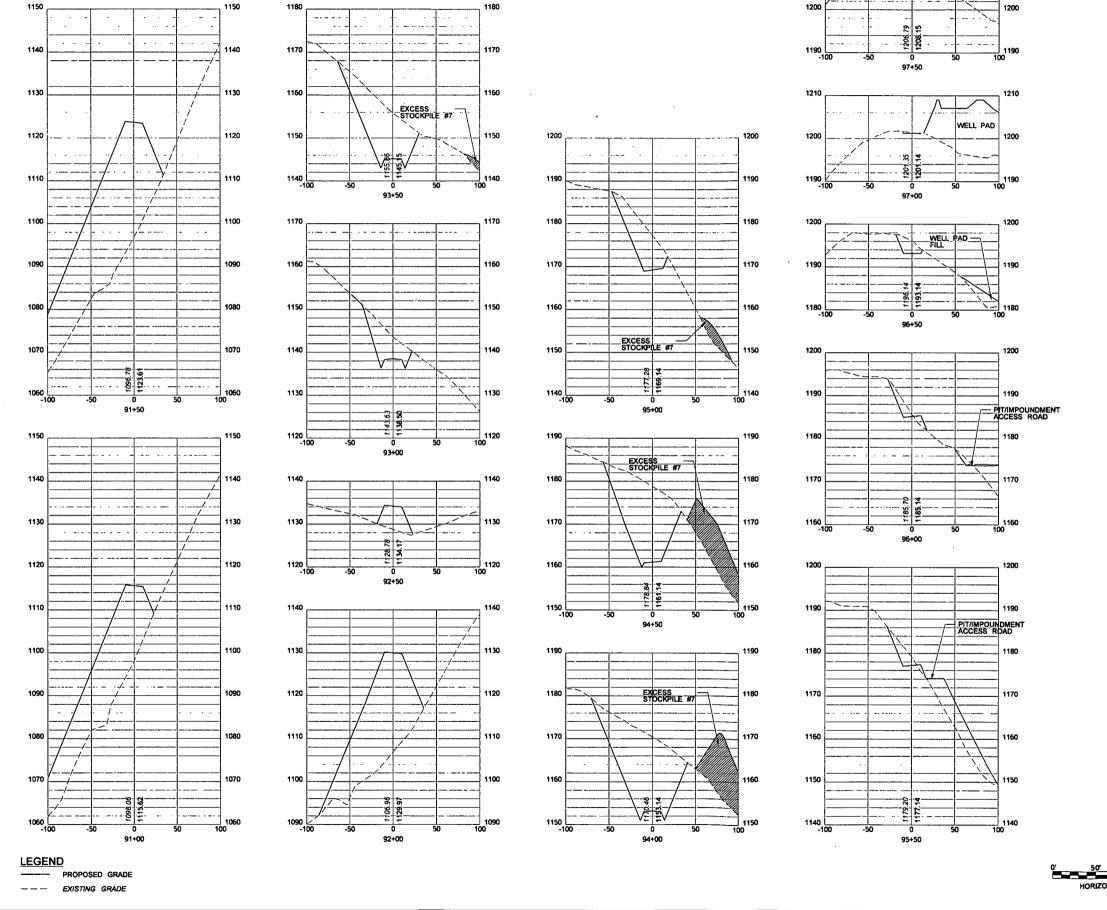
1090

1100

1060

17220 STATE OF

MAIN ACCESS ROAD CROSS SECTIONS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WV


DATE: 9/16/2013

SCALE: AS SHOWN

DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 36 OF 57

VERTICAL SCALE

9/16/2013 WORKSPACE: DOT.2DD6 (SURVEY FEET) U:\2027051372\EQT WEU 5!\13.0 CADD\13.

1210

WELL PAD

17220 STATE OF

THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: 17 PRODUCTION COMPA

SCALE: AS SHOWN

Stante Control of the Control of the

DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 37 OF 57

HORIZONTAL SCALE

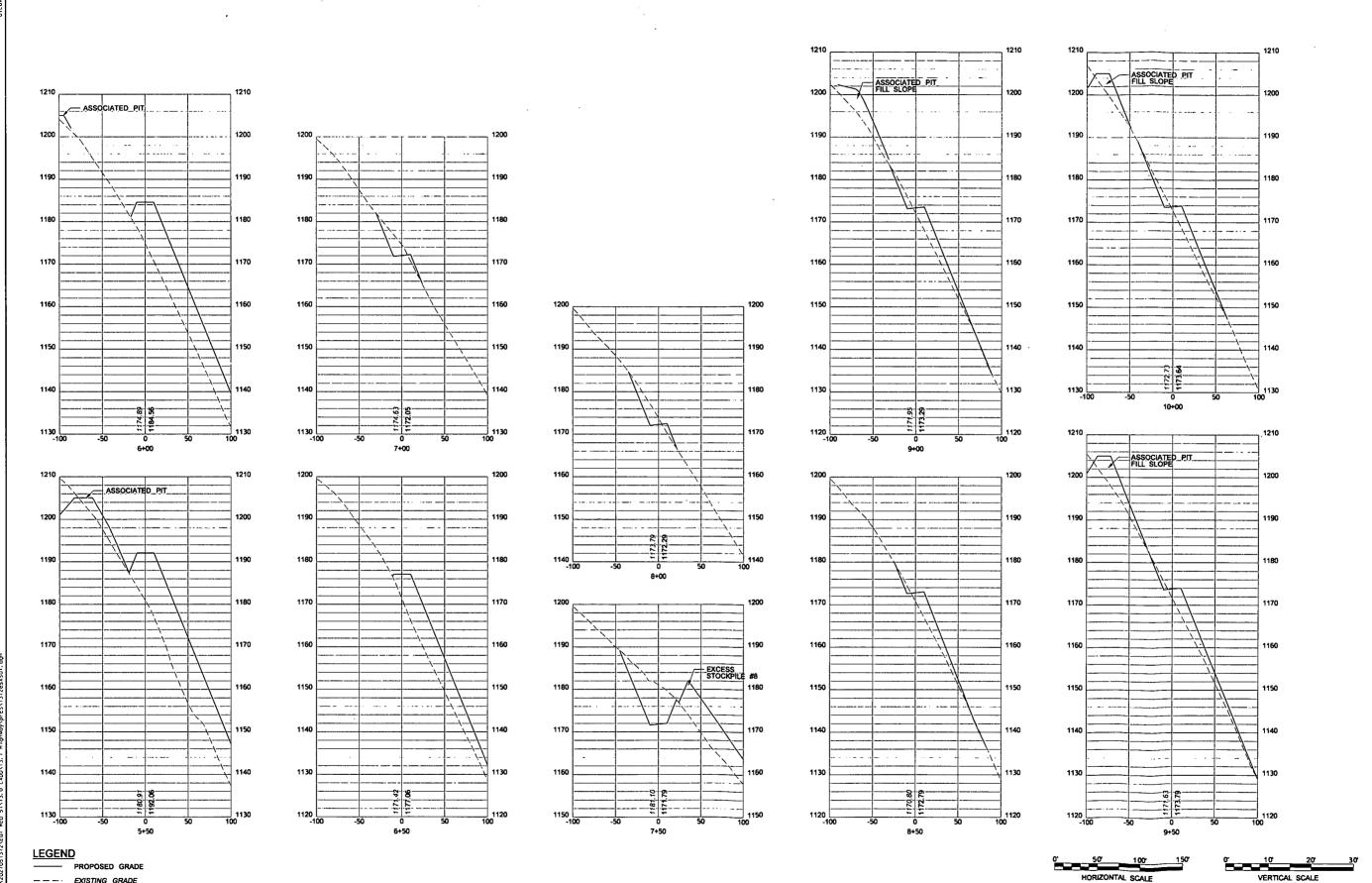
--- EXISTING GRADE

Staintec STATE OF VIRGINITY THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: QT PRODUCTION COMPA ROAD TO IMPOUND ACCESS ROAT CROSS SECTIONS

EQT WEU 51

WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013 SCALE: AS SHOWN


DESIGNED BY:RJH/JMR

FILE NO.:SLS-8051

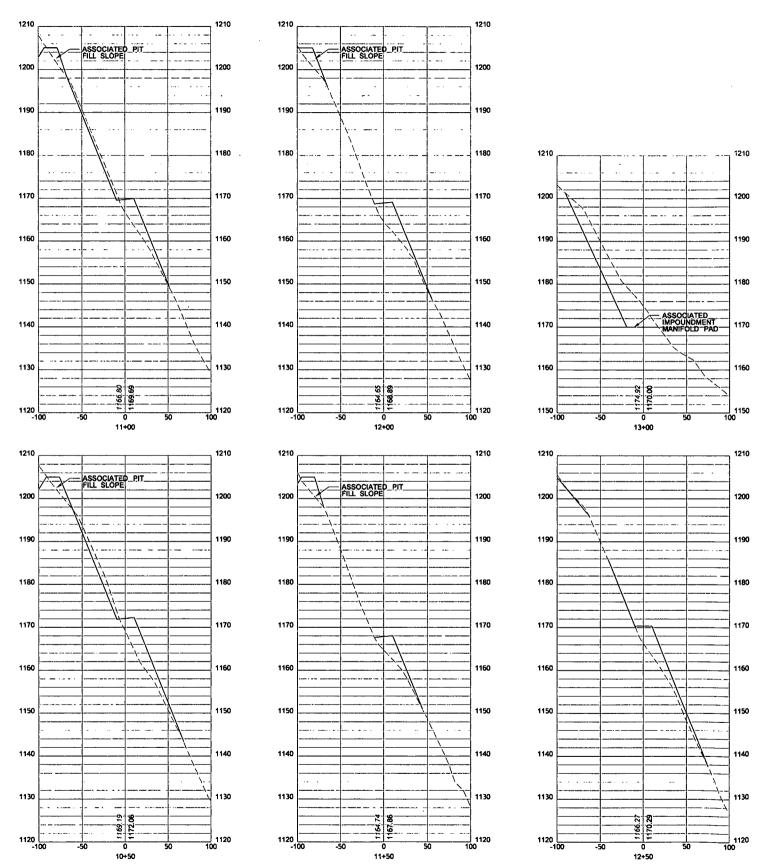
SHEET 38 OF 57

VERTICAL SCALE

HORIZONTAL SCALE

Professional Energy, Consultants
A proposi or mant Juko supernor
Trons
Theory
T

17220 STATE OF


PIT / IMPOUND ACCESS ROAD CROSS SECTIONS
EQT WEU 51
WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013

FILE NO.:SLS-8051

SHEET 39 OF 57

HORIZONTAL SCALE

VERTICAL SCALE

DATE: 9/16/2013

T / IMPOUND ACCESS ROAD CROSS SECTIONS EQT WEU 51

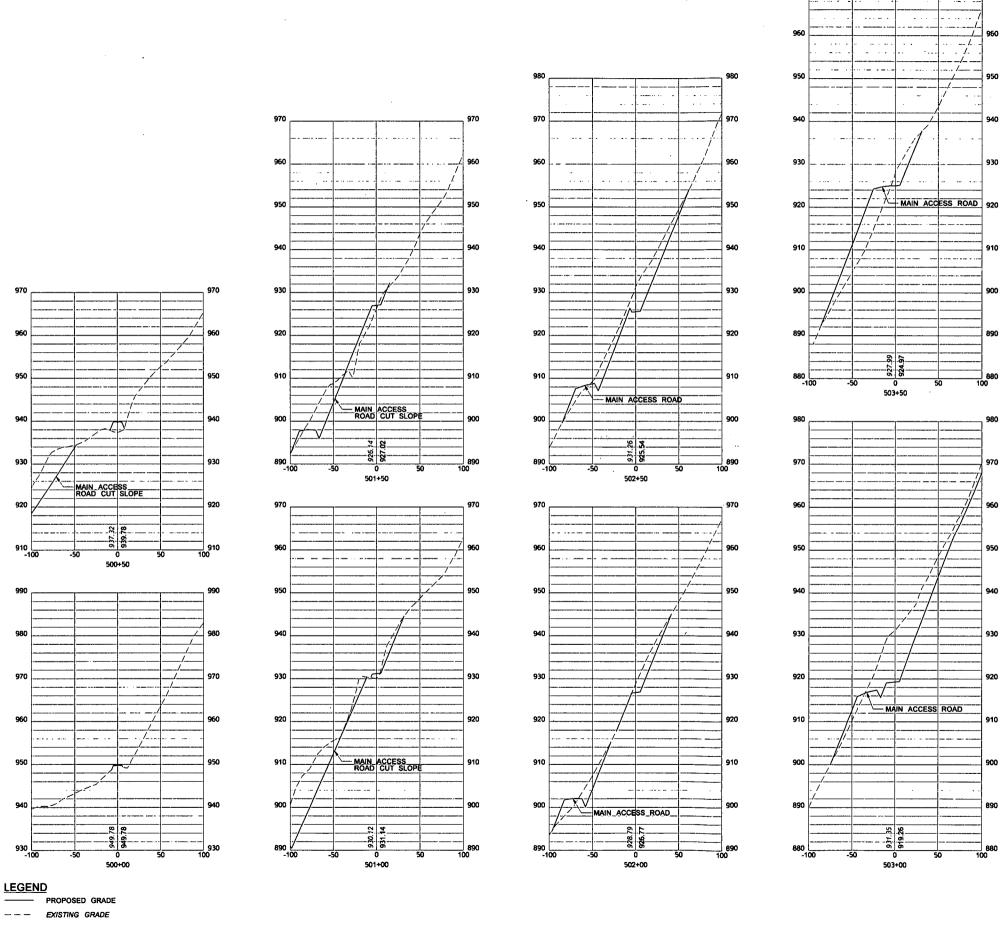
WEST UNION DISTRICT DODDRIDGE COUNTY, WV

SCALE: AS SHOWN DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 40 OF 57

Stantec

Professional Energy Consultar 'A prission of sami Lupo survernos vercos:

STATE OF VIRGINITY


THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: EQT PRODUCTION COMPA

LEGEND

- PROPOSED GRADE

---- EXISTING GRADE

9/16/2013 WORKSPACE: DOT_2006 (SURVEY FEET) UI\2027051372\EQI WEU 51\13.0 CADD\13.

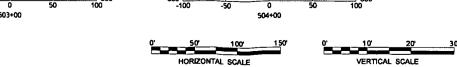
940 TIE INTO MAIN — ACCESS ROAD 910 900

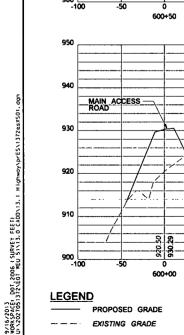
VERTICAL SCALE

EXISTING WELL ACCESS ROAD CROSS SECTIONS

EQT WEU 51

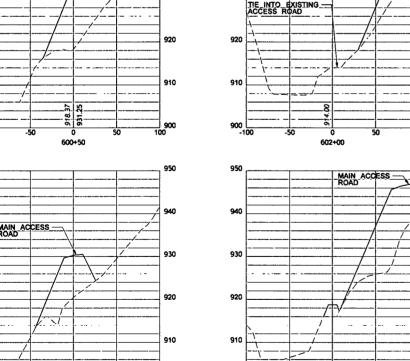
WEST UNION DISTRICT DODDRIDGE COUNTY, WV

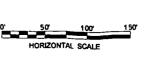

TITLE OF VIRGINIA

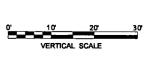

THIS DOCUMENT WAS PREPARED BY: STANTEC FOR: EQT PRODUCTION COMPA

Stainte resident

SHEET 41 OF 57

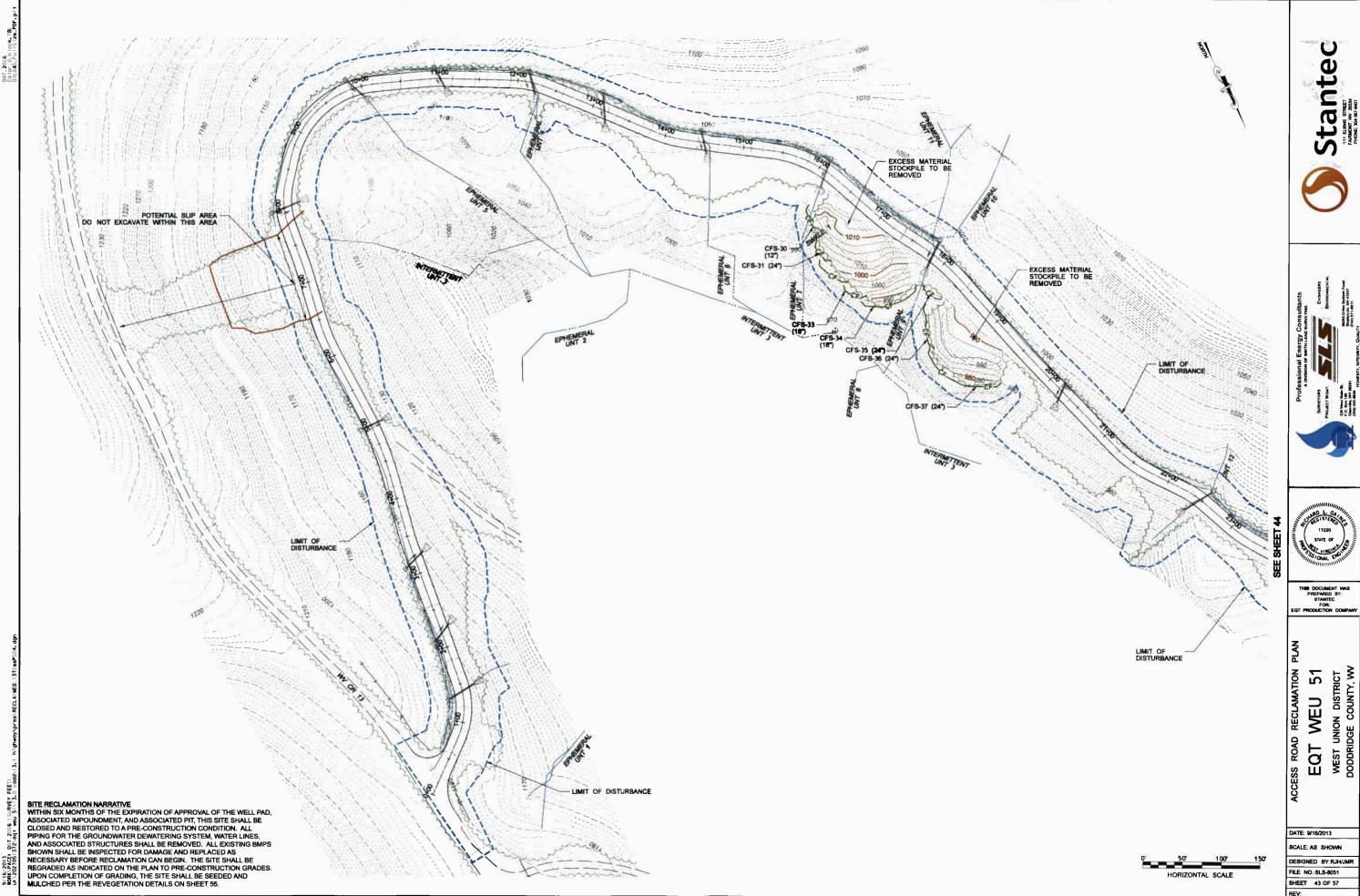





MAIN ACCESS

0 601+00

MAIN ACCESS


STOCKPILE ACCESS ROAD CROSS SECTIONS

EQT WEU 51

WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013

SCALE: AS SHOWN DESIGNED BY:RJH/JMR
FILE NO.:SLS-8051
SHEET 42 OF 57

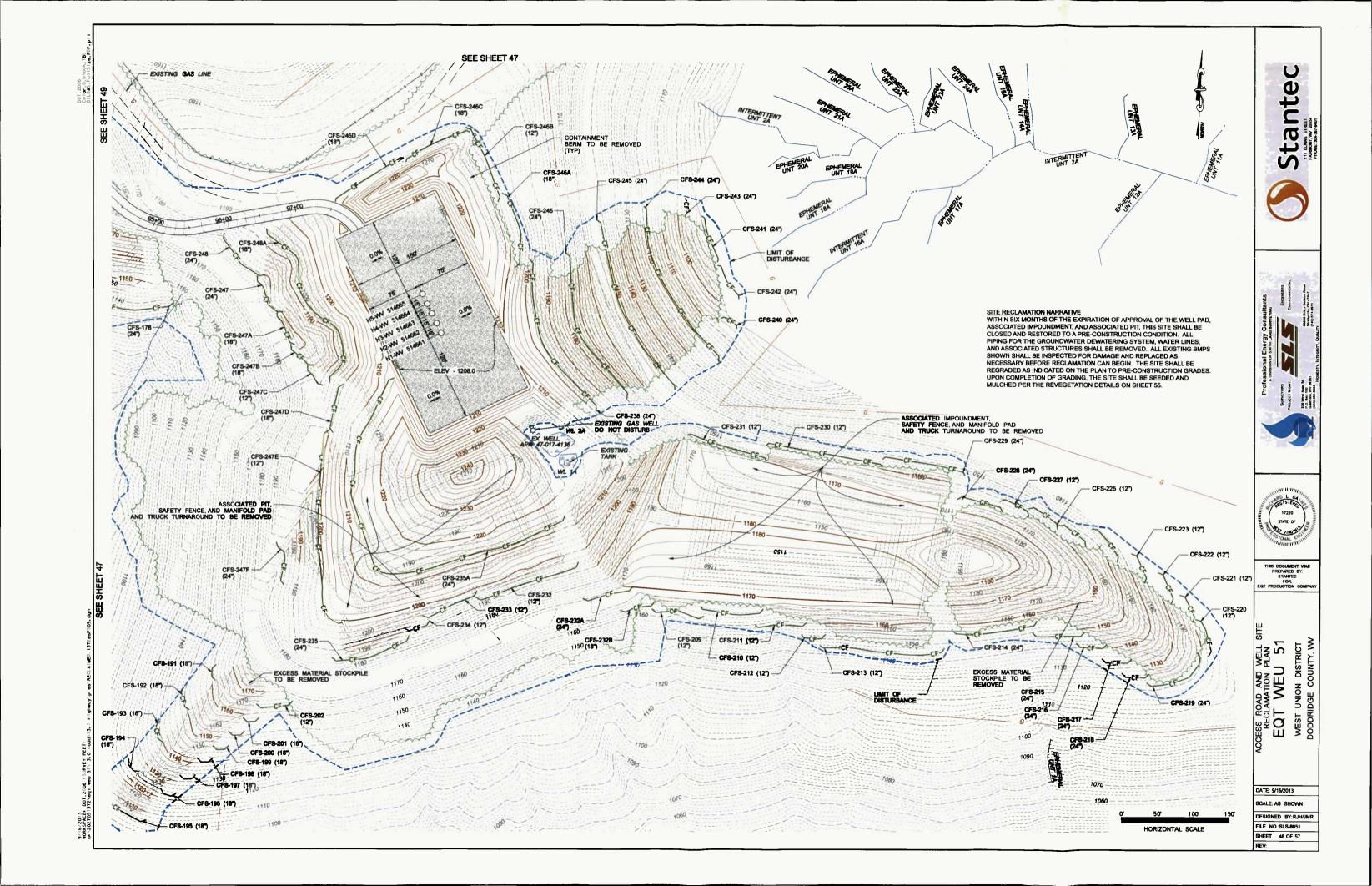
ACCESS ROAD RECLAMATION P

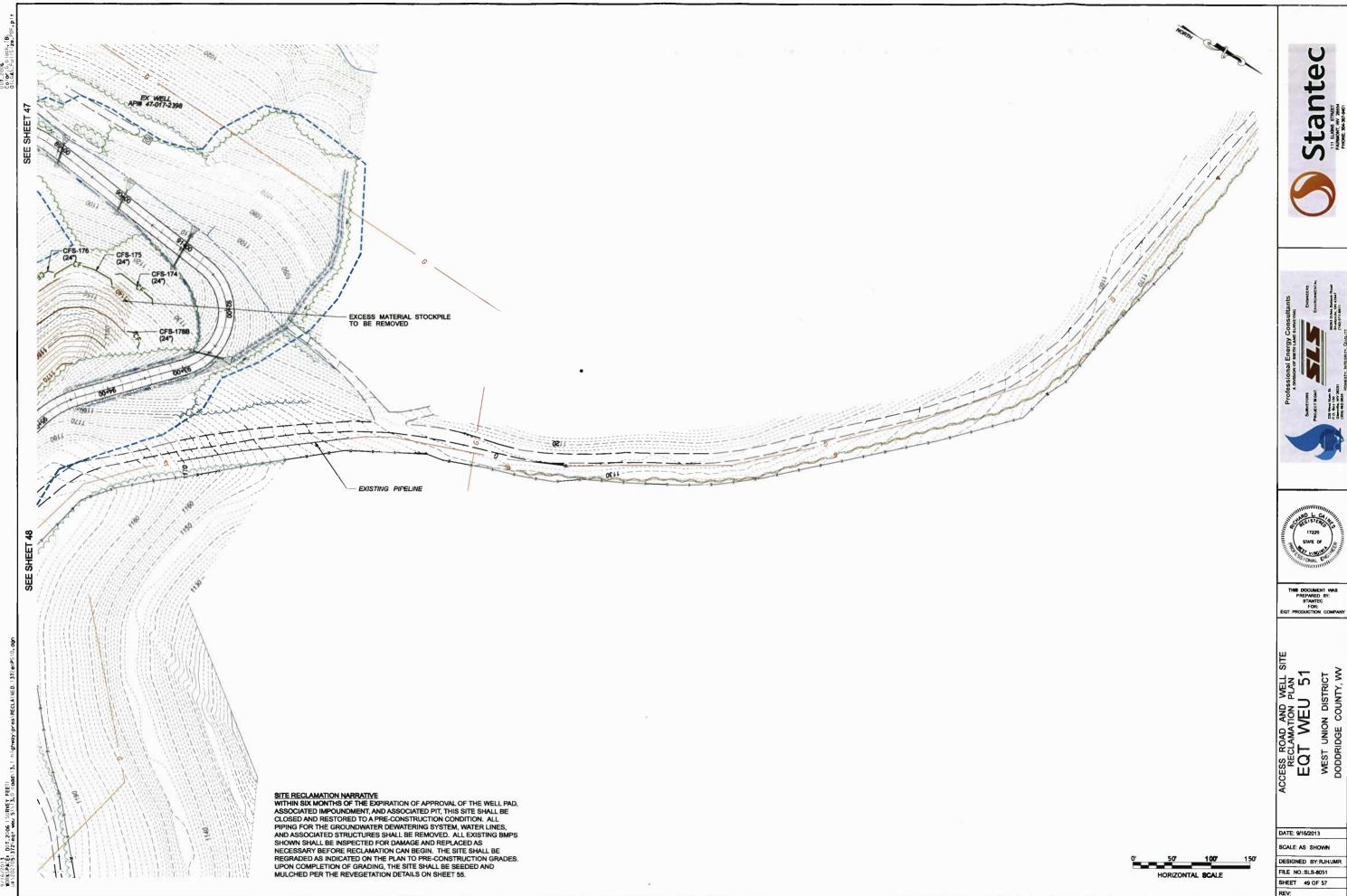
EQT WEU 51

WEST UNION DISTRICT
DODDRIDGE COUNTY, WV

DATE: 9/16/2013

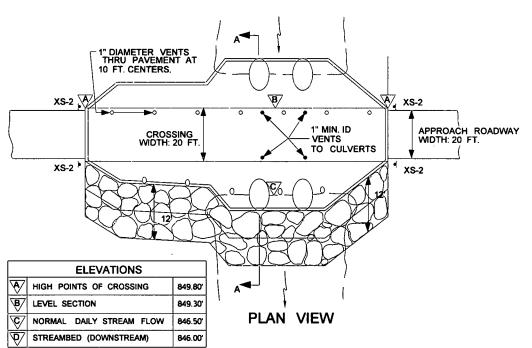
SCALE: AS SHOWN DESIGNED BY:RJH/JMR FILE NO.:8LS-8051 SHEET 44 OF 57

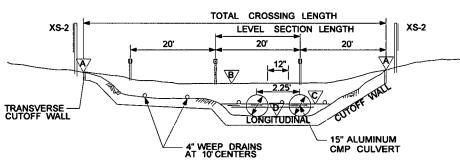

EQT WEU 51
WEST UNION DISTRICT
DODDRIDGE COUNTY, WV ACCESS ROAD RECLAMATION


DATE: 9/16/2013

SCALE: AS SHOWN DESIGNED BY:RJH/JMR

FILE NO.:SLS-8051 SHEET 45 OF 57




DATE: 9/16/2013

SCALE: AS SHOWN

FILE NO.:SLS-8051 SHEET 49 OF 57

ELEVATION VIEW

WEEP DRAINS

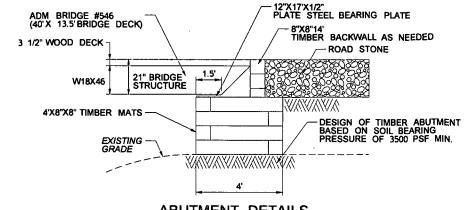
WEEP DRAINS ARE TO BE PLACED ON DOWNSTREAM SIDE ONLY. ANY TYPE OF PIPE WHICH WILL PROVIDE ADEQUATE FORMING OF WEEP HOLES THRU THE WALL MAY BE USED. COST OF PIPE IS TO BE INCLUDED IN VARIOUS BID ITEMS.

CULVERT PIPES

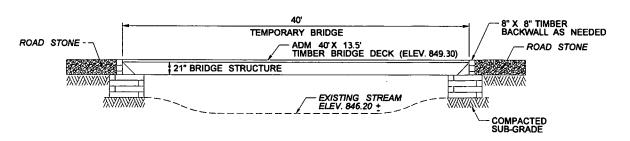
ALTHOUGH THESE DETAILS INDICATE USE OF 2 CULVERTS AS TYPICAL SITUATION, THE CROSSING FOR THIS LOCATION REQUIRES 4 PIPE CULVERTS; AND SUFFICIENT QUANTITIES ARE INCLUDED IN THE CONTRACT DOCUMENTS.

INCIDENTAL ITEMS

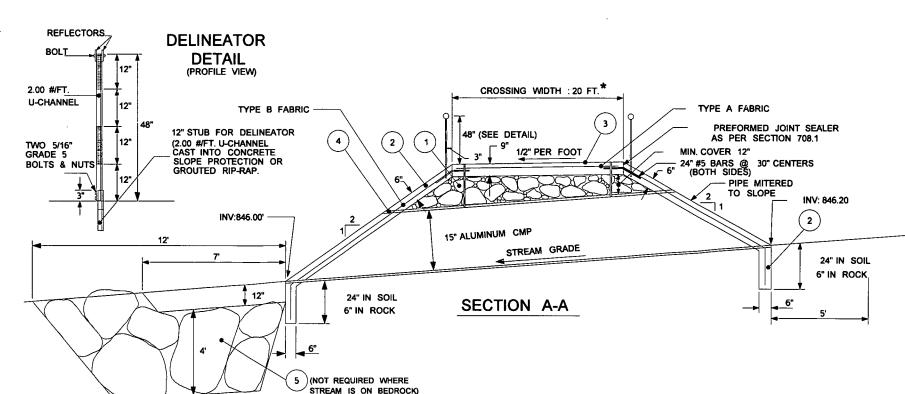
NO SEPARATE PAYMENT FOR JOINT SEALER, #5 BARS, OR VENT PIPES.


HAZARD MARKERS & DELINEATORS

XS-2 HAZARD MARKERS AS PER STANDARD SHEET TP5-2 ARE TO BE INSTALLED AT EACH CORNER OF STRUCTURE. U-CHANNEL (2.00 #/FT.) AS PER STANDARD SHEET TEI-7A SHALL BE USED FOR HAZARD MARKER SUPPORTS AND FOR MOUNTING BIDIRECTIONAL 3 1/4" DELINEATORS AT MAXIMUM 20'SPACING EACH SIDE OF STRUCTURE. COST OF ALL MATERIALS AND LABOR FOR INSTALLATION OF HAZARD MARKERS AND DELINEATORS IS TO BE INCLUDED IN THE VARIOUS BID ITEMS AND NO SEPARATE PAYMENT WILL BE MADE. AT LEAST ONE POST TO BE STRIPED WITH BLACK PAINT AS SHOWN IN DETAIL.


VENT PIPES

VENTS MAY BE COMMERCIALLY-AVAILABLE


ABS, PVC, OR PE.

ABUTMENT DETAILS

TEMPORARY BRIDGE DETAIL

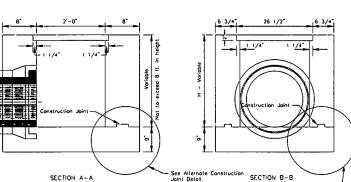
- ig(1ig) rock borrow excavation (rock size maximum; 6" within 12" of PIPE)
- 2 CONCRETE SLOPE PROTECTION (ITEM 218002-000, GROUTED RIP RAP MAY BE SUBSTITUTED AS PER ALTERNATE SLOPE DETAIL)
- (3) 9 INCH REINFORCED PORTLAND CEMENT CONCRETE PAVEMENT
- 4 FOUR 15" ALUMINUM CULVERTS
- (5) ROCK BORROW EXCAVATION (ROCK SIZE MINIMUM 18", MAXIMUM 48")

BLUESTONE CREEK LOW WATER CROSSING DETAIL

U

Stante

CONSTRUCTION DETAILS EQT WEU 51

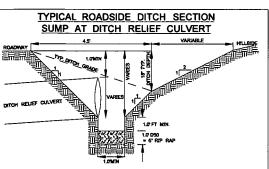

DATE: 9/16/2013

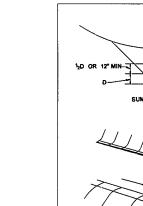
SCALE: AS SHOWN DESIGNED BY:RJH/JMR

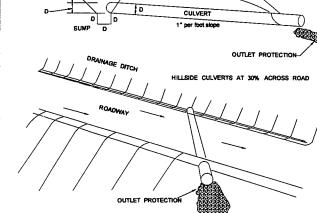
FILE NO.:SLS-8051 SHEET 50 OF 57

PAD UNDERDRAIN DETAIL

ALTERNATE CONSTRUCTION JOINT DETAIL

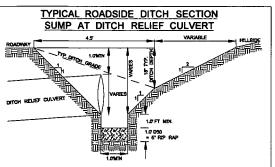



SUMP INLET


NOTES

See Alternote Construction Joint Detail.

The type and size of pipe to be used with the inlet shall be the type and size as called for an the Plans.



Drainage Area (Ac)	Pipe Diameter (In)	Pipe Capacity (Cfs)
10	15	5
20	18	9
30	21	12
50	24	18
80.	27	24
100	30	29
300	36	60
500	42	85

Road Grade (%)	Distance (F1)
2-5	500-300
6-10	300-200
11-15	200-100
16-20	100

All concrete shall be Class B Concrete.

DITCH RELIEF CULVERT

Drainage Area (Ac)	Pipe Diameter (In)	Pipe Capacity (Cfs)
10	15	5
20	18	9
30	21	12
50	24	18
80.	27	24
100	30	29
300	36	60
500	42	85

CORRUGATED METAL PIPE DESIGN TABLE

				OUTLET	PROTECTION	
PIPE LOCATION (STA)	PIPE DIAMETER (IN)	PIPE LENGTH (FT)	MIN D50 (IN)	ROCK DEPTH (IN)	LENGTH (FT)	WIDTH (FT)
1+40	15	37	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
2+20	15	28	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
3+20	15	29	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
5+00	15	29	6	14	8	11.8
8+00	15	37	6	14	8	11.8
9+92	15	30	6	14	8	11.8
11+00	15	29	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
12+18	15	28	6	14	8	11.8
13+15	15	39	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
14+50	15	28	6	14	8	11.8
16+10	15	34	6	14	8	11.8
17+82	18	34	6	14	10	14.5
20+21	15	28	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
22+47	15	41	6	14	8	11.8
24+35	15	39	6	14	8	11.8
26+95	18	30	6	14	9	13.5
28+82	15	30	6	14	8	11.8
31+16	15	40	6	14	8	11.8
37+24	15	55	6	14	8	11.8
39+00	15	40	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
40+88	15	32	6	14	8	11.8
42+75	15	29	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
44+02	15	33	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
53+50	15	35	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
57+00	21	29	6	14	12	17.3
501+58	18	20	6	14	9	13.5
59+ 00	21	29	6	14	12	17.3
60+50	15	33	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
62+25	15	37	6	14	8	11.8
64+25	15	32	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
65+55	15	37	6	14	8	11.8
66+55	27	37	6	14	13	19.8
70+25	15	59	6	14	8	11.8
73+08	18	59	- 6	14	8	11.8
78+20	15	37	6	14	8	11.8
79+73	15	32			CULVERT OUTLE	
80+73	15	37	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
84+50	18	31	6	14	9	13.5
86+34	24	65	6	14	12	14
88+00	15	34	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
89+00	15	28	SEE DI	TCH RELIEF	CULVERT OUTLE	T DETAIL
90+00	15	31			CULVERT OUTLE	
91+00	15	48			CULVERT OUTLE	
92+64	15	39			CULVERT OUTLE	
1+50 (IMPOUND, RD)	15	28			CULVERT OUTLE	
11+60 (IMPOUND, RD)	15	30			CULVERT OUTLE	
STOCKPILES	DUAL 24	35	12	27	26	38

TYPICAL DITCH RELIEF CULVERT
OUTLET TREATMENT

10° MEN.

SECTION VIEW

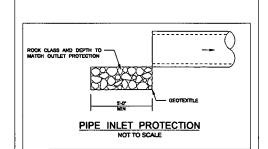
C.L. OF ACCESS ROAD

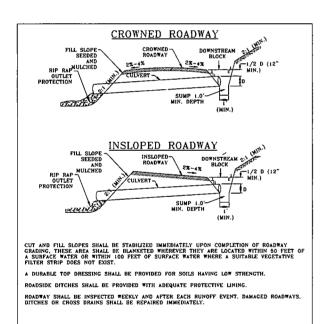
17220 STATE OF

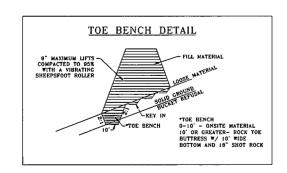
Stante

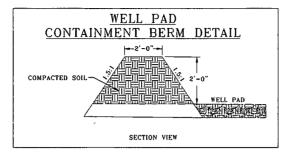
CONSTRUCTION DETAILS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, WV

DATE: 9/16/2013

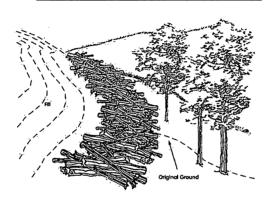

SCALE: AS SHOWN

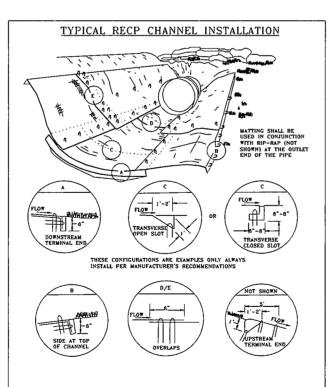

DESIGNED BY:RJH/JMR FILE NO.:SLS-8051 SHEET 51 OF 57

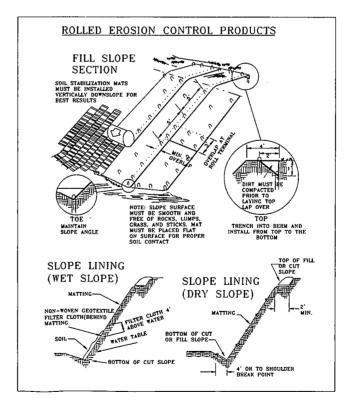

PLAN SECTION A-A NOTES:

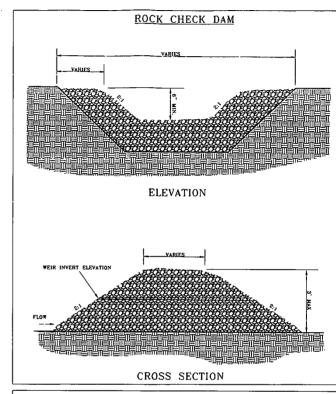

1. PROMDE GEOTEXTILE MATERIAL ALONG ALL DITERFACE AREAS WITH GROUND CONTACT.

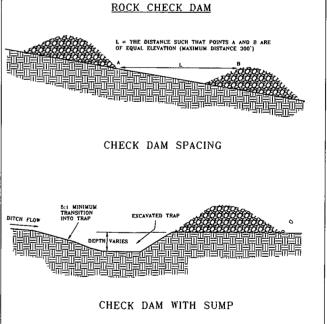
2. SLOPE SHOULD SELEVEL OR AS CLOSE TO LEVEL AS POSSIBLE BASED ON EXISTING SITE CONDITIONS **OUTLET PROTECTION** NOT TO SCALE









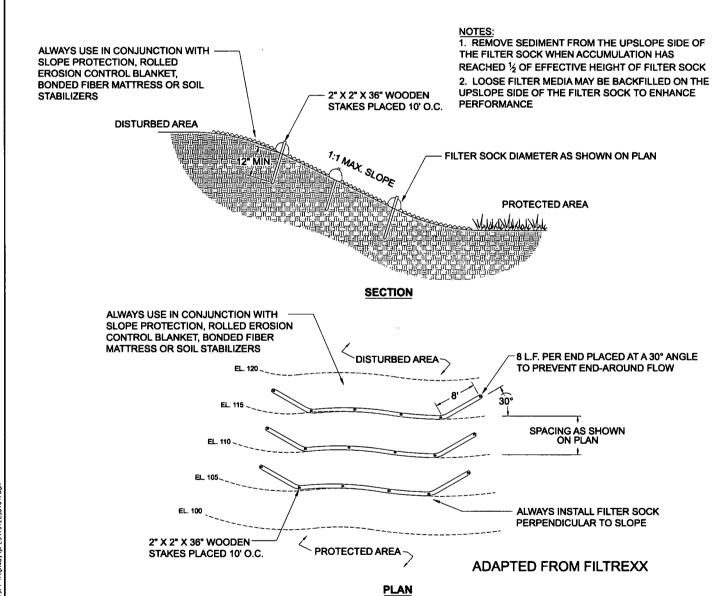

BRUSH PILE SEDIMENT BARRIER

Stantec

CONSTRUCTION DETAILS

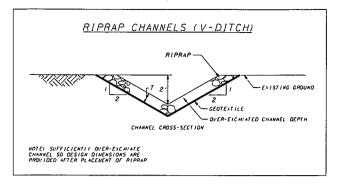
EQT WEU 51

WEST UNION DISTRICT
DODDRIDGE COUNTY, W

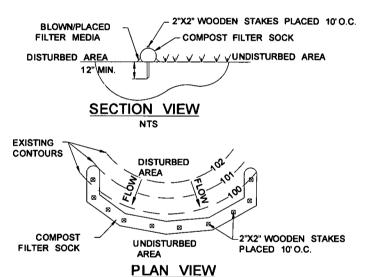

SCALE: AS SHOWN

DESIGNED BY:RJH/JMR

9/16/2013 #ORKSPACE: DOT 2006 (SURVEY FEET) UL\2027051372\EQ1 #EU 51\13.0 CAD


DATE: 9/16/2013

FILE NO.:SLS-8051 SHEET 52 OF 57



COMPOST FILTER SOCK SLOPE INTERRUPTION

(ADAPTED FROM FILTREXX)

STANDARD CONSTRUCTION DETAIL #4-1 COMPOST FILTER SOCK

NTS ADAPTED FROM FILTREXX

SOCK FABRIC SHALL MEET STANDARDS OF TABLE 4.1. COMPOST SHALL MEET THE FOLLOWING STANDARDS:

ORGANIC MATTER CONTENT	80% -100% (DRY WEIGHT BASIS)
ORGANIC PORTION	FIBROUS AND ELONGATED
pH	5.5-8.0
MOISTURE CONTENT	35%-55%
PARTICLE SIZE	98% PASS THROUGH 1" SCREEN
SOLUBLE SALT CONCENTRATION	5.0 DS MAXIMUM

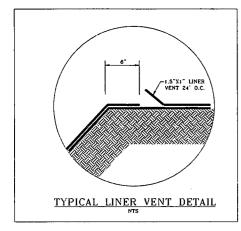
COMPOST FILTER SOCK SHALL BE PLACED AT EXISTING LEVEL GRADE BOTH ENDS OF THE SOCK SHALL BE EXTENDED AT LEAST 8 FEET UP THE SLOPE AT 45 DEGREES TO THE MAIN SOCK ALIGNMENT (SEE FIGURE 4.1). MAXIMUM SLOPE ABOVE ANY SOCK SHALL NOT EXCEED THAT SHOWN ON FIGURE 4.2. TRAFFIC SHALL NOT BE PERMITTED TO CROSS FILTER SOCKS.

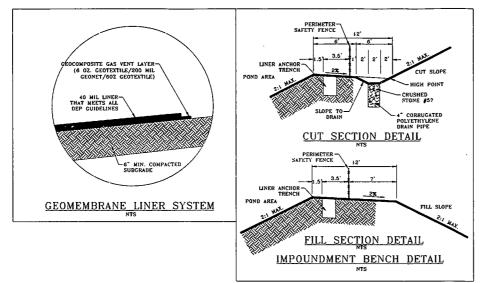
ACCUMULATED SEDIMENT SHALL BE REMOVED WHEN IT REACHES 1/2 THE ABOVE GROUND HEIGHT OF THE SOCK AND DISPOSED IN THE MANNER DESCRIBED ELSEWHERE IN THE PLAN.

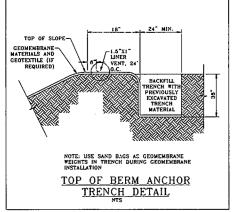
SOCKS SHALL BE INSPECTED WEEKLY AND AFTER EACH RUNOFF EVENT, DAMAGED SOCKS SHALL BE REPAIRED ACCORDING TO MANUFACTURER'S SPECIFICATIONS OR REPLACED WITHIN 24 HOURS OF INSPECTION. BIODEGRADABLE FILTER SOCKS SHALL BE REPLACED AFTER 8 MONTHS; PHOTODEGRADABLE SOCKS AFTER 1 YEAR. POLYPROPYLENE SOCKS SHALL BE REPLACED ACCORDING TO MANUFACTURER'S RECOMMENDATIONS. UPON STABILIZATION OF THE AREA TRIBUTARY TO THE SOCK STAKES SHALL BE REMOVED THE SOCK MAY BE LEFT IN PLACE AND VEGETATED OR REMOVED. IN THE LATTER CASE, THE MESH SHALL BE CUT OPEN AND THE

IN THE EVENT THE GROUND IS FROZEN, #5 REBAR WITH SAFETY CAPS SHALL BE USED INSTEAD OF WOODEN STAKES TO ANCHOR THE FILTER SOCK ONCE THE GROUND THAWS THE REBAR ANCHORS SHALL BE REMOVED AND REPLACED WITH 2" X 2" WOODEN STAKES AND INSTALLED AS SHOWN IN THE DETAIL ABOVE

antec




CONSTRUCTION DETAILS EQT WEU 51


DATE: 9/16/2013

SCALE: AS SHOWN DESIGNED BY:RJH/JMR

FILE NO.: \$L\$-8051 SHEET 53 OF 57

PERIMETER SAFETY FENCE *** ANSES WISE BULL NOT BE LISED, WISE SOLD PORT TO HEAT CORRESPOND *** REPORT OF THE LISED WISE SOLD PORT TO HEAT CORRESPOND *** REPORT OF THE LISED WISE SOLD PORT TO HEAT CORRESPOND *** REPORT OF THE LISED WISE SOLD PORT TO HEAT CORRESPOND *** REPORT OF THE LISED WISE SOLD PORT TO HEAT CORRESPOND *** PRODUCT OF THE LISED WISE SOLD WISE SOLD PORT TO HEAT CORRESPOND *** PRODUCT OF THE LISED WISE SOLD W

WEST VIRGINIA CODE 35 CSR 4 DESIGN AND CONSTRUCTION REQUIREMENTS FOR ASSOCIATED PITS, ASSOCIATED IMPOUNDMENTS, & CENTRALIZED IMPOUNDMENTS GREATER THAN 5,000 BARRELS SECTION VIEW INCISED VOLUME SECTION VIEW KEY IN 2' MINIMUS SECTION VIEW NOTES: 1. ALL FILL SHOULD BE KEYED IN TO ORIGINAL GROUND EVERY 2-5 VERTICAL FEET DEPENDING ON EXISTING GROUND SLOPE 2. MINIMUM OUTSIDE AND INSIDE EMBANKMENT (FILL) SLOPES SHALL BE 2H:1V. THE INSIDE AND OUTSIDE SLOPES MUST ADD UP TO 5H:1V

9/16/2011 TORGOARE: DOI 2006 (SURVEY FEET) UNGOODSJITZNER! WEU SINIS, O CADDNIS. I HIGHWOYPFESNIJTZesDTOI. OGN UNGOODSJITZNER!

DATE: 9/16/2013

Stantec

SCALE: AS SHOWN
DESIGNED BY:RJH/

FILE NO.:SLS-8051 SHEET 54 OF 57

CONSTRUCTION DETAILS

EQT WEU 51

WEST UNION DISTRICT DODDRIDGE COUNTY, WV

Table IV-5

	Line and	retenizer rabic		
pH of Soil	Lime in Tons per Acre	Fertilizer, Lbs., per Acre (10-20-20 or Equivalent)		
Above 6.0	2	500		
6.0 to 6.0	3	500		
Below 5.0	4	500		

Table IV-6
Mulch Materials is Rates and Used

	materi materials is hates and osed						
Material	Minimum Rates per acre	Coverage	Remarks				
Hey or strew	2 to 3 Tons	Cover 75% to 90%	Subject to wind blowing or washing				
	100 to 150 bales	of Surface	unless tied down				
Wood Fiber	1000 to 1500 lbs	Cover all	For hydrosceding				
Pulp Fiber		Disturbed Areas					
Wood - Cellulose	1						
Beatmandeled Bears	1						

Tables IV 1-4 taken from Natural Resources Conservation Service Manual 'Critical Area Planting'

Table IV-1

Recommended S	eeding Dates
Plenting Dates	Suitability
March 1 - April 15 and August 1 - October 1	Best Seeding Periods
April 15 - August I	HIGH RISK - moisture stress likely
	HIGH RISK - freeze damage to young seedling
December 1 - March 1	Good seeding period. Dormant seeding

Table 4a
Permanent Seeding Mixture

	Seeding Rate (lbs/ncre)	Drainage	pli Rar
Crownvetch/	10 - 15	Well - Mod. Well	5.0 -
Tall Fescue	30	Well - Mod. Well	5.0 -
Crownvetch/	10 - 15		5.0 - 1
Perennial Ryegrass	20	Well - Mod. Well	5.0 -
Ladino Clover/	30		
Serecia Lespedeza/	25	Well - Mod. Well	4.5 -
Tall Fescue	2		
Tell Fescue/	40		
Ladino Clover/	. 3	Well - Mod. Well	5.0 -
Redtop	3		
Crownvetch/	10		
Tell Fescue/	20	Well - Mod. Well	5.0 -
Redlop	3	L	
Tali Fescue/	40		
Birdsfoot Trefoil/	10	Well - Mod. Well	5.0 -
Redtop	3		
Serecia Lespedeza/	25		
Tall Fescue/	30	Well - Mod. Well	4.5 -
Redlop	3		l
Redtop/	30		
Tall Fescue/	3	Well - Mod. Well	5.0 -
Creeping Red	50		
Tell Fescue	50	Well - Poorly	4.5 ~

Table 4h Wildlife and Farm Friendly Seed Mixtures

Species/Mixtures	Seeding Rate (Ibs/acre)	Drainage	pH Range
KY Bluegrass/	20		
Redtop/	3	Well - Mod. Well	5.5 - 7.5
Ladino or Birdsfoot Trefoil	01/5		
Timothy/	5	Well - Mod. Well	6.5 - 8.0
Alfelfa	12	well - mod. well	0.5 - 6.0
Timothy/	5	Well - Poorly	5.5 - 7.5
Birdsfoot Trefroil	8	well - Foorly	5.5 - 7.5
Orchardgrass/	10		
Ladino Clover/	2	Well - Mod. Well	5.5 - 7.5
Redtop	3		
Orchardgrass/	10	Well - Mod. Well	5.5 - 7.5
Ladino Clover	2	well - Mod. Well	5.5 - 7.5
Orchardgrass/	20		
Perennial Ryegrass	10 1	Well - Mod. Well	5.5 - 7.5
Creeping Red Fescue/	30	Well - Mod. Well	
Perennial Ryegrass	10		5.5 - 7.5
Orchardgrass or KY Bluegrass	20	Well - Mod. Well	8.0 - 7.5
Birdsfoot Trefoil/	10		
Redtop/	5	Well - Mod. Well	5.5 - 7.5
Orchardgrass	20		
Lathco Flatpes'/	30	Well - Mod. Well	
Perennial Ryegrass	20	mell - Mod. Mell	5.5 - 7.5
Lethco Flatpes*/	30		
Orchardgress	20	Well - Mod. Well	6.6 - 7.5

 Lathos' Flatpen is potentially poisonous to some livestock. All legumes should be planted with proper inoculants prior to seeding. For unprepared seedbed as seeding outside the outlinum timeframe, and 50% more seed to the specified rate. Mixtures listed in bold are suitable for use in shaded woodland settings; those in italics are suitable for use in filter

REVEGETATION

West Virginia Erosion and Sediment Control Field Manual West Virginia Division of Environmental Protection Office of Oil and Gas Charleston, W.Va.

Temporary Seeding

A. General Conditions Where Practice Applies

Where exposed soil surfaces are not to be fine-graded or worked for periods longer than 21 days. Temporary vegetative cover with cediment controls must be established where runoff will go directly into a stream. Immediately upon construction of the site (site Includes road and location), vegetation must be established on road bank and location slopes. A permanent vegetative cover shall be applied to areas that will be left un-worked for a period of more than str months.

B. Seed Mixtures and Planting Dates

Refer to Tables 2 through 4 for recommended dates to establish vegetative cover and the approved lists of temporary and permanent plant species, and planting rates. Table 3 mmended types of temporary vegetation, rates of application, and optimum seeding dates. In situations where another cover is desired, contact the local soil conservation district for seeding rec

C. Seed Application Apply seed by broadcasting, drilling, or by hydroseed according to the rates indicates in Table IV-3. Perform a11 planting operations at right angles to the slope. Necessary site ration and roughening of the soil surface should be done just prior to seeding. Seedbed preparation may not be required on newly disturbed areas.

Permanent Seeding

A. Goneral

Permanent vegetative cover will be established where no further soil disturbance is enticipated or needed. Soil fertility and pH level should be tested and adjusted according to seed species planted. Planting of permanent vegetative covers must be performed a11 disturbed areas after completion of the drilling process. Any site that contains significant amounts of toosoll shall have the toosoll removed and stocknilled when feasible. Topsoil should not be added to slopes steeper than 2:1 unless a good bonding to the sub-layer can be achieved. After proper grading and seedbed preparation, the tation will reestablish ground cover for the control of surface water runoff erosion. All required seedbed preparation and loosening of soil by disking or dozer tracking should be performed just prior to seeding. If seedbed preparation is not feasible, 50% more seed shall be added to the recommended rates shown in Tables IV-3 and IV-4. When hydroseeding, seedbed preparation may not be necessary if adequate site preparation was performed. Incorporate the appropriate amount of time and/or fertilizer in the sturry mix when hydroseeding.

When hydroseeding, first mix the lime, fertilizer, and hydro-mulch in the recomme amount of water. Mix the seed and inoculants together within one hour prior to planting, and add to the slurry just before seeding. Apply the slurry uniformly over the prepared site. Assure that aditation is continuous throughout the seeding operation and the mbx is applied within one hour of initial mixing.

B. Lime and Fertilizer

1. Lime shall be applied to a11 permanent seedings. The pH of the soil is to be determined and time applied accordingly. Once the pH is known, select the amount of time to be expolled from Table IV-5.

2.Fertilizer shall be applied in all permanent seedings. Apply the equivalent for 500 lbs. minimum 10-20-20 fertilizer per acre or use the amount of fertilizer and time recommended by a certified soil test.

3.Application: For best results and maximum benefits, the time and fertilizer are to be applied at the time of seedbed preparation.

C. Permanent Seed Mbdures

Planners should take into consideration the species makeup of the existing pasture and the landowner's future pasture management plans when recommending each mixtures Selection: From Tables IV 4e and b, Permanent Seeding Mixtures Suitable for Establishment in West Virginia.

- 1. All legumes must be planted with the proper inoculants prior to seeding.
- Lathoo' Flatpea is potentially poisonous to some livestock.
 Only endophyte free varieties of Tail Fescue should be used. Tail Fescue and Crownvetch are also very invasive species, non-native to WV.
- 4. For unprepared seedbeds or seeding outside the optimum timeframes, add 50% more seed to the specified rate. Mixtures in Table 4b are more wildlife and farm friendly; those listed in bold are suitable for use in shaded woodland settings. Mbdures in Italic are suitable for use in filter strips.

D. Seeding for Wildlife Habitat

Consider the use of the native plants or locally adapted plants when selecting cover types and species for wildlife habitat. Wildlife friendly species or mixes that have multiple values should be considered. See wildlife friendly species/mbdures in Table IV-4b. Consider selecting no or low maintenance long-fived plants adaptable to sites which may be difficult to maintain with equipment.

A. General Occanic Mulches

The application of straw, hav or other suitable materials to the soil surface to prevent erosion. Straw made from wheat or cats is the preferred mulch, the use of hay is permissible, but not encouraged due to the risk of spreading invasive species. Mulch must be applied to all temporary and permanent seeding on all disturbed areas. Depending on sits conditions, in critical areas such as waterways or steep slopes, additional or substitute soil protective measures may be used if deemed necessary. Examples include jute mesh and soil stabilization blankets or erosion control matting.

Areas that have been temporarily or permanently seeded should be mulched diately following seeding. Mutches conserve destrable soil properties. reduce soil moisture loss, prevent crusting and sealing of the soil surface and provide a suitable microdimate for seed ge

Areas that cannot be seeded because of the season should be mulched to provide some protection to the soil surface. An organic mutch, straw or hay should be used and the area then seeded as soon as weather or seasonal conditions permit. Do not use fiber mulch (cellulose -hydroseed) alone for this practice; at normal application rates it will not give the soil protection of other types of mutch.

Wood cellulose fiber mulch is used in hydroseeding operations and applied as part of the sturry. It creates the best seed-soft contact when applied over the top of (as a separate operation) newly seeded areas. Fiber mulch does not alone provide sufficient protection on highly emplifie soils, or during less than favorable growing conditions. Fiber mulch should not be used alone during the dry summer months or when used for late fall mulch cover. Use straw mulch during these periods and fiber mulch may be used to tack (anchor) the straw mutch. Fiber mutch is well suited for steen alones, critical areas and areas

B. Chemical Mulches, Soil Binders and Tackiflers

A wide range of synthetic spray on materials are marketed to stabilize and or in conjunction with fiber mulch, straw or hay.

When used alone most chemical mulches do not have the capability to insulate the soil or retain soil moisture that organic mulches have.

From Table IV-6 select the type of mulch and rate of application that will best

D. Anchoring

action or rapid water runoff. In such cases, mulch is to be anchored mechanically or with mulch netting. 1. Mechanical Anchoring

Follow manufacturer's recommendation when positioning and stabiling the mutch netting in the soil.

Mulching

susceptible to wind.

protect the soil surface. These are mixed with water and soraved over the mulch and to the soil. They may be used alone in some cases as temporary stabilizers.

C. Specifications

sult the conditions at the site. Depending on the field situation, mulch may not stay in place because of wind

Apply mutch and pull mutch anchoring tool over the mutch. When a disk is used set the disk straight and pull across slope. Mulch material should be tucked into the soil about three inches

2. Mulch netting

U

Stante

CONSTRUCTION DETAILS EQT WEU 51 WEST UNION DISTRICT DODDRIDGE COUNTY, W

DATE: 9/16/2013

SCALE: AS SHOWN

DESIGNED BY:RJH/JMR FILE NO.:SLS-8051

SHEET 55 OF 57

ITEM DESCRIPTION	QUANTITY	UNIT	UNIT COST	ITEM TOTAL
1.0 CLEARING AND GRUBBING				
1.a. TREE CLEARING	3.06	AC	\$	\$
1.b. MOWING	0	AC	\$	\$
				•
2.0 COMPOST FILTER SOCK (INCLUDES ASSOC. PIT AND IMPOUNDMENT)				
2.a. 12" COMPOST FILTER SOCK	1,981	LF	\$	\$
2.b. 18" COMPOST FILTER SOCK	33	LF	\$	\$
2.c. 24" COMPOST FILTER SOCK	3,194	LF	\$	\$
3.0 AGGREGATE SURFACING	T	1		I
3.a. 6" of 3"-6" BASE	2,500	TONS	s	\$
3.b. 2" of 3/4" CRUSHER RUN	1,029	TONS		\$
3.c. GEOTEXTILE	10,000	SY		\$
			I 	1*
4.0 COCONUT SLOPE MATTING	8,166	SY	s	T\$
	5,100		<u> </u>	14
5.0 SEED & MULCH	1	Γ	<u> </u>	T
5.a. SEEDING (INCLUDES AREA OF SLOPE MATTING AND DITCH LINING)	2.6	AC	s	\$
5.b. MULCH (EXCLUDES AREA OF SLOPE MATTING AND DITCH LINING)	0.9	_	s	\$
Job. MOLOT (EXCEDES AVEX OF SECTE MATTING AND BITCH EINING)	0.5	1 70	19	ΙΦ
6.0 DITCH LINING	T	Γ	<u></u>	ı
6.a. HIGH VELOCITY EROSION CONTROL BLANKET (MIN SHEAR 2.25 PSF)	318		6	
10.8. HIGH VELOCITY EROSION CONTROL BLANKET (WIN SHEAR 2.25 PSF)	316	SY	19	[\$
7.0 EVOAVATION	T		· · · · · · · · · · · · · · · · · · ·	
7.0 EXCAVATION	40.000			
7.a. WELL PAD (CUT W/ NO SWELL) - INCLUDES EXC. FOR AGGREGATE	49,320		\$	\$
7.b.TOPSOIL (ESTIMATED 6")	3,020		\$	\$
			T.	r
8.0 DITCH LENGTH	715	LF	\$	\$
	· · · ·		ı. ·	r
9.0 KEYWAY EXCAVATION	872	CY	\$	\$
	·			
10.0 UNDERDRAIN SUMP				
10.a. 4" CORRUGATED UNDERDRAIN	554	LF	\$	\$
		<u> </u>		
	<u> </u>			
_				
	<u> </u>			
				
	 	<u> </u>		
		 		
<u></u>	-	 -		
 		 		
	<u> </u>	<u> </u>		L

EQT WEU 51 MATERIAL QUANTITIES
WELL PAD

EQT WEU 51 MATERIAL QUANTI ACCESS ROAD	HES		~· <u> </u>	
ITEM DESCRIPTION	QUANTITY	UNIT	UNIT COST	ITEM TOTAL
1.0 CLEARING AND GRUBBING				
1.a. TREE CLEARING	14.56	AC	\$	\$
1.b. MOWING	0	AC	\$	\$
2.0 COMPOST FILTER SOCK	, <u></u>	Γ	<u> </u>	<u> </u>
2.a. 12" COMPOST FILTER SOCK	5,511	LF	\$	\$
2.b. 18" COMPOST FILTER SOCK	841	LF	\$	\$
2.c. 24" COMPOST FILTER SOCK	15,996	LF	\$	\$
		L	<u></u>	\$
3.0 AGGREGATE SURFACING				T
3.a. 6" of 3"-6" BASE	6,466	TONS	\$	\$
3.b. 2" of 3/4" CRUSHER RUN	2,661	TONS	\$	\$
3.c. GEOTEXTILE	25,859	SY	\$	\$
4.0 COCONUT SLOPE MATTING	70,112	SY	s	s
	70,712			
5.0 SEED & MULCH 5.a. SEEDING (INCLUDES AREA OF SLOPE MATTING)	20.2	100	6	
5.b. MULCH (EXCLUDES AREA OF SLOPE MATTING)	29.3	AC		\$
3.0. MOLCH (EXCLUDES AREA OF SLOPE MATTING)	14.8	AC	12	\$
5.0 DITCH LINING				
6.a. d50 = 6" MIN	4,701	TON		\$
6.b. d50 = 12" MIN	456	TON	\$	\$
7.0 CMP CULVERT		Γ		
7.a. 15" CMP	1,292	LF	\$	\$
7.b. 18" CMP	174	LF	\$	\$
7.c. 21" CMP	58	LF	\$	\$
7.d. 24" CMP	135	LF	\$	\$
7.e. 27" CMP	37	LF	\$	\$
B.0 EXCAVATION		<u> </u>		1
8.a. ACCESS ROAD (CUT W/ NO SWELL) - INCLUDES EXC. FOR AGGREGATE	47,206	CY	\$	\$
8.b. TOPSOIL (ESTIMATED 6")	15,149	CY	\$	\$
9.0 DITCH LENGTH	8,797	LF	s	\$
is X	0,707			
10.0 RIP RAP APRONS				
10.a. d50 = 6" MIN	379	TON	\$	\$_
10.b. d50 = 12" MIN	121	TON	\$	\$
11.0 KEYWAY EXCAVATION	22,339	CY	\$	 \$
Ar dan				
12.0 BLUESTONE CREEK LOW WATER CROSSING 12.a. 9" REINFORCED PORTLAND CEMENT CONCRETE PAVEMENT	14	CY	•	\$
12.b. 6" CONCRETE SLOPE PROTECTION	5	_	\$ \$	\$
12.c. TYPE A FABRIC	56		\$	\$
12.d. TYPE B FABRIC	32	SY	\$	\$
12.e. ROCK BORROW EXCAVATION (6" MAX)	92	TON		\$
				\$
12.f. 15" ALUMINUM CMP (4 BARRELS)	140			
12.f. 15" ALUMINUM CMP (4 BARRELS) 12.g. OUTLET PROTECTION (18" MIN, 48" MAX)	43	LF TON	\$	\$

CONSTRUCTION QUANTITIES

EQT WEU 51

WEST UNION DISTRICT
DODDRIDGE COUNTY, WV

Stantec

DATE: 9/16/2013

SCALE: AS SHOWN

FILE NO.:SLS-8051

DESIGNED BY:RJH/JMR

CONSTRUCTION QUANTITIES

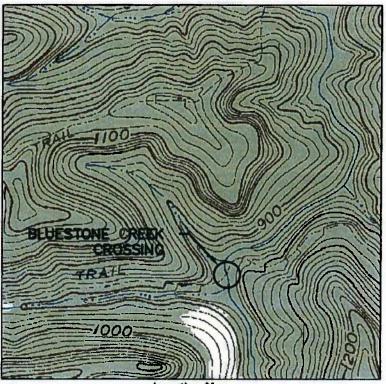
EQT WEU 51

WEST UNION DISTRICT
DODDRIDGE COUNTY, W

DATE: 9/16/2013

SCALE: AS SHOWN

DESIGNED BY:RJH/JMR
FILE NO.:SLS-8051
SHEET 57 OF 57
REV:


EQT WEU'51 MATERIAL QUAN						
ASSOCIATED IMPOUNDMENT						
ITEM/DESCRIPTION	QUANTITY	UNIT	UNIT COST	ITEM TOTAL		
1.0 CLEARING AND GRUBBING						
1.a. TREE CLEARING	3.73	AC	\$	\$		
1.b. MOWING	0	AC	\$	\$		
en a proposition de la companya de La companya de la companya del companya de la companya de la companya del companya de la companya del la companya de la companya del la companya de la companya de la companya del la companya	Service of the service of					
2.0 COMPOST FILTER SOCK (SEE WELL PAD QUANTITIES)						
2.a. 12" COMPOST FILTER SOCK		LF	\$	\$		
2.b. 18" COMPOST FILTER SOCK		LF	\$	\$		
2.c. 24" COMPOST FILTER SOCK		LF	\$	\$		
3.0 AGGREGATE SURFACING (MANIFOLD PAD)				T		
3.a. 6" of 3"-6" BASE	209	TONS	\$	\$		
3.b. 2" of 3/4" CRUSHER RUN	86	TONS		\$		
3.c. GEOTEXTILE	834	SY	<u> </u>	\$		
		'	17,			
4.0 COCONUT SLOPE MATTING	3,897	SY	s	ls .		
	1 0,007	1 0.	14	14		
5.0 SEED & MULCH	1	T	<u> </u>	T		
5.a. SEEDING (INCLUDES AREA OF SLOPE MATTING AND DITCH LINING)	3.3	AC	\$	\$.		
5.b. MULCH (EXCLUDES AREA OF SLOPE MATTING AND DITCH LINING)	2.5		\$	\$		
13.b. WOLCH (EXCLUDES AREA OF SLOPE IVAT TING AND DITCH LINING)	1 2.5	I AC	<u> </u>	19		
the state of the s	1 4000	1 20	<u> </u>	la .		
6.0 KEYWAY EXCAVATION	1,339	CY	<u> </u>	\$		
<u>. Anno 1 m la la la regional especialmente any amina a seguina a personalità de la </u>	T	r :				
7.0 LINER SYSTEM	 	 	ļ	ļ		
7.a. PRIMARY LINER (60 MIL)	4,834		\$	\$		
7.b. NON-WOVEN GEOTEXTILE FABRIC CUSHION (16 OZ FELT)	4,834	SY	 \$	\$		
the control of the co			<u>*</u>			
8.0 EXCAVATION	1					
8.a. ASSOC. PIT (CUT W/ NO SWELL) - INCLUDES EXC. FOR AGGREGATE	80,982	CY		\$		
8.b. TOPSOIL (ESTIMATED 6")	2,025	CY	\$	\$		
Andrew Marketter (1997) and the control of the cont	<u> </u>		<u> </u>	**************************************		
9.0 MISCELLANEOUS						
9.a. ACCESS GATE W/ EMERGENCY LIFE LINE	1	EACH	\$	\$		
9.b. PERIMETER SAFETY FENCE	1,021	LF	\$	\$		
		1				
				1		
	1		<u> </u>	1		
				<u> </u>		
	1	 	†			
		 		1		
		 	 			
	+	+		1		
	1	+	-	 		
	+	+	-	-		
	 	+	 	 		
	-	 	-	 		
	+	 		+		
	1	 		-		
	<u> </u>		ļ	-		
	ļ			ļ		
	1	ļ				
	_					

S S S S S S S
\$ \$ \$ \$ \$ \$
\$ \$ \$ \$
\$ \$ \$ \$
\$ \$ \$
\$ \$ \$ \$ \$
\$ \$ \$ \$ \$
\$ \$ \$ \$ \$
\$ \$
\$
\$
\$
\$
\$
\$
<u> </u>
T
\$
\$
19
\$
14
7
\$
\$
_I₽
Τ
\$
\$
14
<u> </u>
\$
\$
19

+
+

+

+
+

NOTE:
GEOTEXTILE FABRIC, ROLLED EROSION CONTROL PRODUCT AND LINER SYSTEM QUANTITIES DO NOT ACCOUNT FOR OVERLAP.

EQT Well Site - WEU 51 (Bluestone Creek)

Hydrologic and Hydraulic Report

Location Map 1" = 1,000

(West Union, WV USGS Quad; West Union District, Doddridge County) Coordinates: 39°15'12.50"N, 80°45'14.60"W

Prepared For/Operator:

EQT Production Company Operator # 306686 115 Professional Place Bridgeport, WV 26330 (304) 348-3870

Prepared By:

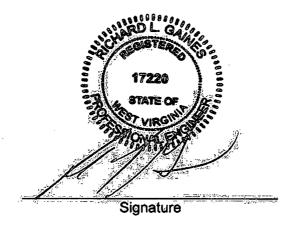
111 Elkins Street Fairmont, WV 26554

Professional Energy Consultants

A DIVISION OF SMITH LAND SURVEYING

ENGINEERS ENVIRONMENTAL

226 West Main St


SURVEYORS

56085 Dilles Bottom Road Shadyside, OH 43947 (740) 671-9911

HONESTY, INTEGRITY, QUALITY

Prepared: September 2013

CERTIFICATION OF THE ENGINEER

Date

Printed Name:

Company: Address:

Richard L. Gaines, PE Stantec Consulting, Inc.

111 Elkins Street

Fairmont, WV 26554 (304) 367-9401

Phone:

TABLE OF CONTENTS

OVERVIEW	1
DRAINAGE NARRATIVE	1-3
APPENDICES	
APPENDIX A - DRAINAGE FLOWRATE CALCULAT	IONS
APPENDIX B - HEC-RAS EXISTING CONDITIONS IN	MODEL
APPENDIX C - HEC-RAS PROPOSED CONDITIONS	S TEMPORARY BRIDGE MODEL
APPENDIX D - HEC-RAS PROPOSED CONDITION	NS PERMANENT LOW WATER
CROSSING MODEL	
APPENDIX E - CROSS-SECTION MAP	
ADDENINY E _ FEMA FIRM FLOOD MAD	

OVERVIEW

This project includes the construction of a site for a natural gas well site access. The proposed site is located approximately 0.4 miles west of the intersection of and old jeep trail and CR 13 (Maxwell Ridge Road) Latitude 39°15'12.50"N Longitude 80°45'14.60"W.

DRAINAGE NARRATIVE

Based upon the drainage area at the site and the rural characteristics of the watershed, the USGS Water Resources Investigation Report (WRIR) 00-4080 method for Estimating Magnitude and Frequency of Peak Discharges for Rural, Unregulated Streams in West Virginia was utilized to determine the 2- through 100-year storm events for the watershed.

Stream base-flow discharge was determined using estimated flow depth measurements witnessed by Stantec staff during a site visit on July 31, 2013 From the above mentioned site visit, a range of flow depths (0.30' to 0.60) was measured in the project vicinity.

The drainage area consisted mostly of forested area comprised 2,967 acres or 4.64 square miles at the crossing site. The Bluestone Creek is located in the Upper Middle Island Creek Watershed. The crossing is located within a FEMA Floodplain Zone A. See Appendix A for peak discharge calculations and resulting flows.

A flood plain analysis was performed utilizing the US Army Corp of Engineers Hydrologic Engineering Center River Analysis System (HEC-RAS). Bluestone Creek is approximately 20 feet wide at the proposed site and varies up to 25 feet wide up and down stream. The overbank slopes (looking downstream) are sloped approximately 2:1 to 3:1. The main stream channel can be described as a stony bottom with some weeds. A Mannings 'n' value of 0.035 was used for the main stream channel. The overbank areas are described as vegetated with trees and underbrush. A Mannings 'n' value of 0.055 was used for the overbank areas.

Both the existing and proposed conditions were modeled for the stream crossing location. Supporting background information for the HEC-RAS model can be found in Appendix B.

Existing Conditions Model

The creek was modeled utilizing existing conditions to establish a baseline in which to compare the proposed scenarios with a temporary stream crossing and a permanent stream crossing installed at separate times. The model assumes the temporary crossing will be removed before the permanent low water crossing is installed fifteen cross sections, as shown in the provided exhibits, covering about 1100 linear feet of stream

channel were used for the HEC-RAS model. See Appendix B for the existing condition HEC-RAS Model.

Proposed Conditions Model with Temporary Bridge

The proposed condition model consisted of filling a portion of the right overbank for a future compressor station. This assumes placing a 40' long x 13.5' wide temporary bridge over the existing stream with a 35 foot opening between the timber abutments. (Bridge Deck elevation of 849.30. In comparing the proposed model to the existing model, the proposed improvements results in less than a 1-foot increase in the 100-yr water surface elevation. See Table 1 below. See Appendix C for the temporary bridge condition HEC-RAS Model.

TABLE 1

To the wind the state of the st	the state of the state of the state of	CO. TOWN SINK ASSESSED CONTROL OF STATE	my 18 F. School & S. maranger But the
HEC:RAS CROSS	EXISTING 100-YR-WSEL	PROPOSED 100-YR WSEL	INCREASE IN 100-YRWSEL
** SECTION (*) 1500	854.88	854.86	20.02
1400	854.64	- 854.62	∔ 0:02
1300	4 - 854.32	854.29	- 20:03
1200	854:02	853.99	-0.03
~1100	853.11	852.83	####=0:28
1000	852.93	852.57	-0.36
900	# 852.08	852.21	0.13
800	852.70	852.70	0.00
7.00	851,99	851.99	0.00
600	851.95	851.95	0.00
500	85/1/92	851.92	0000
400	850.89	850.89	0.00
:300	/849193	849:93	0.00
200	848:51	848.51	0.00
A100	847/25	847/25	0:00

Proposed Conditions Model with Permanent Low Water Crossing

The proposed condition model consisted of filling a portion of the stream with four 15" CMP (Aluminum) pipes and a low water crossing for a future well access road. This assumes placing approximately two feet of fill on the pipes (minimum pad elevation of

849.30. This scenario provides adequate capacity to pass the computed stream base-flow discharge. In comparing the proposed model to the existing model, the proposed improvements results in less than a 1-foot increase in the 100-yr water surface elevation at any place along the stream which was modeled. See Table 2 below. See Appendix D for the temporary bridge condition HEC-RAS Model.

TABLE 2

HECERIAS GROSS	EXISTING 100-YR-WSEL	PROPOSED 100 YR WSEL	INGREASE IN 100 YR WSEL
SECTION	EEISWAII COOL		1000/1KW/8-1-
11500	854.88	4854 .90	0.02
1400	854.64	854:67	0.03
1300	854.32	854.35	////0.03
1200	854:02	854.06	0.04
/1100	853.11	853.26	0.1/5
1000	852.93	853.11	0.18
900	852.08	853.04	0.96
800	852.70	852.68	-0.02/
700	4851.99	851195	=0.04
600	851.95	*851:90	=0.05
500	. 851.92	851.87	±0\05
400	850.89	850:85 m	≟0.04
300	849.93//	849.93	0.00
200	.848!51	848.51	0.00
100	847/25	847.24,	

CONCLUSIONS

The proposed fill in the existing floodplain will not impact the upstream water surface elevation more than 0.96 feet as shown in the model for either condition.

Appendix A

Stantec Consulting Services Inc. 111 Elkins Street Fairmont WV 26554 Tel: (304) 367-9401

Drainage Calculations for WEU 51 - Crossing Stream: Bluestone Creek

Located on an old jeep trail off of Maxwell Ridge Road (CR 13)

Doddridge County, West Virginia Coordinates: 39°15'12.50"N, 80°45'14.60"W Located in a FEMA Flood Zone A; (No base flood elevation determined)

Located in rural area, unregulated, no gaging stations near site Use WRIR 00-4080 to Estimate Peak Discharge

- Located in North Region (Figure 7)
- Use Regression Equations for an ungaged stream (Table 4)

Upstream to Stream Station 13+00

Drainage area = 2575.92 Acres = 4.025 Square Mile

$$Q_2 = 138 A^{0.724} = 138(4.025)^{0.724} = 378.21 \text{ CFS}$$

$$Q_{10} = 341 A^{0.653} = 341(4.025)^{0.653} = 846.58 CFS$$

$$Q_{25} = 478 A^{0.626} = 478 (4.025)^{0.626} = 1,142.91 CFS$$

$$Q_{50} = 594 A^{0.609} = 594 (4.025)^{0.609} = 1,387.04 CFS$$

$$Q_{100} = 722 A^{0.594} = 722 (4.025)^{0.594} = 1,651.08 CFS$$

Stream Station 13+00 and Downstream

Drainage area = 2966.92 Acres = 4.64 Square Mile

$$Q_2 = 138 A^{0.724} = 138(4.6359)^{0.724} = 418.95 \text{ CFS}$$

$$Q_{10} = 341 A^{0.653} = 341(4.6359)^{0.653} = 928.41 \text{ CFS}$$

$$Q_{25} = 478 A^{0.626} = 478 (4.63594.025)^{0.626} = 1,248.61 CFS$$

$$Q_{50} = 594 A^{0.609} = 594 (4.6359)^{0.609} = 1,511.69 \text{ CFS}$$

$$Q_{100} = 722 A^{0.594} = 722 (4.6359)^{0.594} = 1,795.65 \text{ CFS}$$

In cooperation with the West Virginia Department of Transportation Division of Highways

Estimating Magnitude and Frequency of Peak Discharges for Rural, Unregulated, Streams in West Virginia

Water-Resources Investigation Report 00-4080

U.S. Department of the Interior U.S. Geological Survey

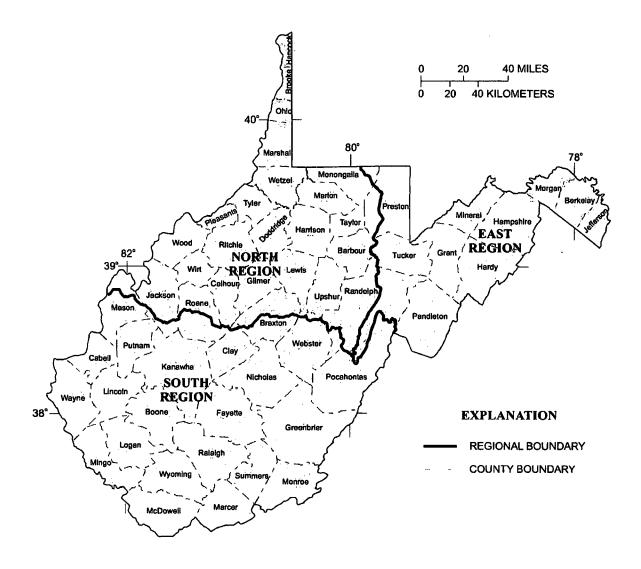


Figure 7. Regional boundaries for the estimating equations.

representative of frequency discharges expected in West Virginia. Log₁₀-transformed drainage area was determined as the most significant independent variable. An areal plot of residuals did not indicate additional subregions. A generalized least-squares regression model was executed with log₁₀-transformed drainage area as the independent variable to determine frequency-discharge equations for the North Region (table 4).

South Region.-Regional regression procedures for the log₁₀-transformed 100-year discharge were completed for the South Region. The number of gaging stations included in the analysis of the South Region was reduced from 110 to 100 by the exclusion of 10 Virginia stations. Stations 03207400, 03207500,

03207800, 03208500, 03208950, and 03209000 were not used because high regression residuals for these headwater streams of the Levisa Fork, which tend to be more rocky than the sandy streams common in the South Region, indicated that stations in this geographic area were not representative of frequency discharges expected in West Virginia. Stations 02009500, 02011400, and 02011460 were excluded because a high regression residual resulted for station 02009500, and Bisese (1995, p. 45) had omitted all three of these stations from the regional regression analysis for Virginia. Station 02012950 was excluded because it is located in carbonate rock (D.C. Hayes, U.S. Geological Survey, oral commun., 1999) (the equations developed for West Virginia are not applicable in karst areas

Table 4. Estimating equations and regression statistics determined from the regional regression analysis [Q(n) is the discharge in cubic feet per second for the (n)-year recurrence interval; A is the drainage area in square miles.]

Regression equation	Standard error of the model, in percent	Average standard error of sampling, in percent	Average perdiction error, in percent	Equivalent years of record	Number of streamflow stations	Range of drainage area, in square miles				
East Region										
Q(2)=62.6A ^{0.842}	37.7	8.3	38.8	2.3						
$Q(5)=102A^{0.849}$	32.4	8.9	33.7	5.2						
$Q(10)=133A^{0.855}$	30.7	9.5	32.3	8.3						
Q(25)=174A ^{0.863}	30.3	10.6	32.3	12.6	74	0.22.1.496				
$Q(50)=206A^{0.869}$	31.0	11.3	33.2	33.2	74	0.22-1,486				
$Q(100)=240A^{0.875}$	32.2	12.0	34.6	17.4						
Q(200)=276A ^{0.881}	34.0	12.9	36.6	18.8						
Q(500)=326A ^{0.889}	36.8	14.1	39.8	20.0						
		North	n Region		ı					
$Q(2)=138A^{0.724}$	27.0	6.9	28.0	3.3						
$Q(5)=249A^{0.678}$	26.6	7.3	27.7	4.7						
$Q(10)=341A^{0.653}$	26.7	8.0	28.0	6.3						
Q(25)=478A ^{0.626}	27.6	8.6	29.0	8.3	(2)	0.12.1.616				
$Q(50)=594A^{0.609}$	28.5	8.9	29.9	9.5	62	0.13-1,516				
Q(100)=722A ^{0.594}	29.7	9.5	31.3	10.5						
Q(200)=862A ^{0.580}	31.1	10.3	32.9	11.2						
Q(500)=1069A ^{0.563}	33.2	11.1	35.2	11.8						
		South	Region		ı					
Q(2)=95.4A ^{0.785}	38.4	7.3	39.2	1.6		•				
$Q(5)=153A^{0.772}$	35.8	7.3	36.6	2.7						
Q(10)=197A ^{0.766}	35.3	8.0	36.3	3.8						
Q(25)=257A ^{0.759}	35.9	8.6	37.0	5.3	100	0.10.0.271				
$Q(50)=305A^{0.755}$	37.0	8.9	38.2	6.2	100	0.10-8,371				
$Q(100)=355A^{0.751}$	38.5	9.5	39.9	6.9						
Q(200)=408A ^{0.748}	40.3	10.0	41.7	7.4						
Q(500)=481A ^{0.744}	43.1	10.8	44.7	7.9						

Appendix B

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

X	X	XXXXXX	XX	ХX		XX	XX	>	X	XXXX
X	X	X	Х	Χ.		X	X	X	Х	Х
X	X	X	X			X	X	X	X	X
XXX	XXX	XXXX	Х		XXX	XX	XX	XXX	XXX	XXXX
X	X	X	Х			X	X	X	X	X
Х	X	X	Х	Х		X	X	X	X	X
Х	Х	XXXXXX	ХХ	XX		X	X	X	X	XXXXX

PROJECT DATA

Project Title: Bluestone Creek WEU 51

Project File: existing.prj Run Date and Time: 9/13/2013 7:30:15 AM

Project in English units

PLAN DATA

Plan Title: Plan 20

Plan File: u:\2027051372\Project\Task #20 EQT WEU 51\HEC-RAS\existing.p20

Geometry Title: Existing Stream
Geometry File: u:\2027051372\Project\Task #20 EQT WEU

51\HEC-RAS\existing.g01

Flow Title

: Existing
: u:\2027051372\Project\Task #20 EQT WEU Flow File

51\HEC-RAS\existing.f01

Plan Summary Information:

Cross Sections = Number of: 15 Multiple Openings Inline Structures = Lateral Structures = Culverts 0 0 =

Bridges 0

Computational Information

Water surface calculation tolerance = Critical depth calculation tolerance = Maximum number of iterations = Maximum difference tolerance = 0.01 20 0.3 Flow tolerance factor 0.001

Computation Options

Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance Computational Flow Regime: Subcritical Flow

Flow Title: Existing Flow File: u:\2027051372\Project\Task #20 EQT WEU 51\HEC-RAS\existing.f01

Flow Data (cfs)

River	Reach	RS 100 Year	2 Year	10 Year
25 Year	50 Year	100 Year	270	0.45
Bluestone		1500	378	847
1143	1387	1651		
Bluestone	Creek 1	1300	419	928
1249	1512	1796		

Boundary Conditions

River Downstream	Reach	Profile	Upstream
Bluestone Creek Critical	1	2 Year	
Bluestone Creek Critical	1	10 Year	
Bluestone Creek Critical	1	25 Year	
Bluestone Creek Critical	1	50 Year	
Bluestone Creek Critical	1	100 Year	

GEOMETRY DATA

Geometry Title: Existing Stream
Geometry File: u:\2027051372\Project\Task #20 EQT WEU 51\HEC-RAS\existing.g01

CROSS SECTION

RIVER: Bluestone Creek

RS: 1500 REACH: 1

INPUT Description: X-1500 Station Elevation Data num= 13 Sta 23 99 Sta 77 Elev Elev Sta Elev Elev Sta Sta Elev 0 867 855 47 854 68 854 853 94 852 849 107 849 115 849 129 850 137 854 142 855 159 868 Manning's n Values num= Sta n Val Sta n Val Sta n Val .055 94 .035 137 .055

Right 137 Lengths: Left Channel Right 105 Bank Sta: Left Coeff Contr. Expan. 94 97 101 .1 . 3 Page 2

existing.rep

CROSS SECTION OUTPUT Profile #2 Year

-				
E.G. Elev (ft)	852.39	Element	Left OB	Channel
Right OB Vel Head (ft)	0.22	wt. n-val.	0.055	0.035
W.S. Elev (ft)	852.18	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	0.27	101.51
E.G. Slope (ft/ft)	0.002277	Area (sq ft)	0.27	101.51
Q Total (cfs)	378.00	Flow (cfs)	0.07	377.93
Top Width (ft)	42.40	Top width (ft)	3.04	39.36
Vel Total (ft/s)	3.71	Avg. Vel. (ft/s)	0.26	3.72
Max Chl Dpth (ft)	3.18	Hydr. Depth (ft)	0.09	2.58
Conv. Total (cfs)	7921.8	Conv. (cfs)	1.5	7920.4
Length Wtd. (ft)	100.96	Wetted Per. (ft)	3.05	40.74
Min Ch El (ft)	849.00	Shear (lb/sq ft)	0.01	0.35
Alpha	1.00	Stream Power (lb/ft s)	159.00	0.00
0.00 Frctn Loss (ft)	0.29	Cum Volume (acre-ft)	0.07	1.82
0.16 C & E Loss (ft) 0.13	0.01	Cum SA (acres)	0.15	0.76

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	853.86	Element	Left OB	Channel
Right OB Vel Head (ft)	0.45	Wt. n-val.	0.055	0.035
W.S. Elev (ft)	853.41	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	16.15	151.32
<pre>E.G. Slope (ft/ft)</pre>	0.003137	Area (sq ft)	16.15	151.32
Q Total (cfs)	847.00	Flow (cfs)	20.70	826.30
Top Width (ft)	62.47	Top Width (ft)	20.66	41.81
vel Total (ft/s)	5.06	Avg. Vel. (ft/s)	1.28	5.46
Max Chl Dpth (ft)	4.41	Hydr. Depth (ft)	0.78	3.62
Conv. Total (cfs)	15123.0	Conv. (cfs)	369.7	14753.4
Length Wtd. (ft)	100.63	Wetted Per. (ft)	20.71	43.48
Min Ch El (ft)	849.00	Shear (1b/sq ft) Page 3	0.15	0.68

Δ	V٦	C	٠	٦	ng		rc	2
C	Л 1	•		,	114	•		

		existing.rep		
Alpha 0.00	1.14	Stream Power (1b/ft s)	159.00	0.00
Frctn Loss (ft) 0.45	0.35	Cum Volume (acre-ft)	0.59	2.92
C & E Loss (ft) 0.35	0.00	Cum SA (acres)	0.50	0.81
CROSS SECTION OUTPUT	Profile #25 Ye	ar		
E.G. Elev (ft)	854.56	Element	Left OB	Channel
Right OB Vel Head (ft)	0.57	Wt. n-Val.	0.055	0.035

E.G. Elev (ft)	854.56	Element	Left OB	Channel
Right OB Vel Head (ft)	0.57	Wt. n-Val.	0.055	0.035
w.s. Elev (ft) 105.00	853.99	Reach Len. (ft)	97.00	101.00
Crit W.S. (ft)		Flow Area (sq ft)	29.61	175.85
E.G. Slope (ft/ft)	0.003451	Area (sq ft)	29.61	175.85
Q Total (cfs)	1143.00	Flow (cfs)	51.32	1091.68
Top Width (ft)	68.83	Top Width (ft)	25.86	42.97
Vel Total (ft/s)	5.56	Avg. Vel. (ft/s)	1.73	6.21
Max Chl Dpth (ft)	4.98	Hydr. Depth (ft)	1.14	4.09
Conv. Total (cfs)	19457.8	Conv. (cfs)	873.6	18584.2
Length Wtd. (ft)	100.48	Wetted Per. (ft)	25.95	44.78
Min Ch El (ft)	849.00	Shear (lb/sq ft)	0.25	0.85
Alpha 0.00	1.19	Stream Power (lb/ft s)	159.00	0.00
Frctn Loss (ft)	0.37	Cum Volume (acre-ft)	0.95	3.40
0.69 C & E Loss (ft) 0.47	0.01	Cum SA (acres)	0.62	0.82

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	855.08	Element	Left OB	Channel
Right OB Vel Head (ft)	0.67	Wt. n-∨al.	0.055	0.035
0.055 W.S. Elev (ft)	854.42	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	51.74	194.48
0.44 E.G. Slope (ft/ft)	0.003550	Area (sq ft)	51.74	194.48
0.44 Q Total (cfs)	1387.00	Flow (cfs)	77.97	1308.78
0.24 Top Width (ft)	102.12	Top Width (ft)	57.03	43.00
2.09		Page 4		

Vel Total (ft/s)	5.62	existing.rep Avg. Vel. (ft/s)	1.51	6.73
0.56 Max Chl Dpth (ft) 0.21	5.42	Hydr. Depth (ft)	0.91	4.52
Conv. Total (cfs)	23280.2	Conv. (cfs)	1308.7	21967.4
Length Wtd. (ft) 2.13	100.39	Wetted Per. (ft)	57.13	44.81
Min Ch El (ft) 0.05	849.00	Shear (1b/sq ft)	0.20	0.96
Alpha 0.00	1.36	Stream Power (1b/ft s)	159.00	0.00
Frctn Loss (ft)	0.36	Cum Volume (acre-ft)	1.26	3.72
C & E Loss (ft) 0.51	0.03	Cum SA (acres)	0.73	0.82

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	855.58	Element	Left OB	Channel
Right OB Vel Head (ft)	0.71	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	854.88	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	80.59	214.30
1.93 E.G. Slope (ft/ft)	0.003406	Area (sq ft)	80.59	214.30
1.93 Q Total (cfs)	1651.00	Flow (cfs)	142.03	1507.23
1.74 Top Width (ft)	115.49	Top Width (ft)	68.10	43.00
4.40 Vel Total (ft/s)	5.56	Avg. Vel. (ft/s)	1.76	7.03
0.90 Max Chl Dpth (ft)	5.88	Hydr. Depth (ft)	1.18	4.98
0.44 Conv. Total (cfs)	28288.6	Conv. (cfs)	2433.6	25825.3
29.8 Length Wtd. (ft)	100.27	Wetted Per. (ft)	68.20	44.81
4.48 Min Ch El (ft)	849.00	Shear (1b/sq ft)	0.25	1.02
0.09 Alpha	1.47	Stream Power (lb/ft s)	159.00	0.00
0.00 Frctn Loss (ft)	0.34	Cum Volume (acre-ft)	1.60	4.03
1.05 C & E Loss (ft) 0.56	0.04	Cum SA (acres)	0.81	0.82

CROSS SECTION

RIVER: Bluestone Creek REACH: 1

RS: 1400

INPUT Description: X-1400

Station Elevation Data Sta Elev Sta 0 863 17 101 852 110 142 855 168	num= Elev 855 848 868	existing.re 12 Sta Ele 48 85 117 84	v Sta 3 57	Elev 851 849	Sta 85 135	Elev 852 854
Manning's n Values Sta n Val Sta 0 .055 101	num= n Val .035	3 Sta n Va 135 .05				
Bank Sta: Left Right 101 135	Lengths: L	eft Channel 120 109	Right 100	Coeff Co	ntr. .1	Expan.
CROSS SECTION OUTPUT Pro	file #2 Yea	ır				
E.G. Elev (ft) Right OB	852.10	Element		Left	OB	Channel
Vel Head (ft)	0.34	Wt. n-Val	•	0.0	55	0.035
W.S. Elev (ft) 100.00	851.76	Reach Len	. (ft)	120.	00	109.00
Crit W.S. (ft)		Flow Area	(sq ft)	9.	30	78.32
E.G. Slope (ft/ft)	0.003599	Area (sq	ft)	9.	30	78.32
Q Total (cfs)	378.00	Flow (cfs)	7.	86	370.14
Top Width (ft)	54.00	Top Width	(ft)	24.	59	29.41
<pre>Vel Total (ft/s)</pre>	4.31	Avg. Vel.	(ft/s)	0.	85	4.73
Max Chl Dpth (ft)	3.76	Hydr. Dep	th (ft)	0.	38	2.66
Conv. Total (cfs)	6301.2	Conv. (cf:	s)	131	1	6170.1
Length Wtd. (ft)	109.23	Wetted Pe	r. (ft)	24.	68	30.98
Min Ch El (ft)	848.00	Shear (1b,	/sq ft)	0.	08	0.57
Alpha 0.00	1.18	Stream Po	ver (lb/ft s	168.	00	0.00
Frctn Loss (ft) 0.16	0.61	Cum Volum	e (acre-ft)	0.	06	1.61
C & E Loss (ft) 0.13	0.03	Cum SA (a	cres)	0.	12	0.68

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	853.50	Element	Left OB	Channe l
Right OB Vel Head (ft)	0.49	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 100.00	853.01	Reach Len. (ft)	120.00	109.00

Crit W.S. (ft)		existing.rep Flow Area (sq ft)	67.27	117.06
E.G. Slope (ft/ft)	0.003983	Area (sq ft)	67.27	117.06
Q Total (cfs)	847.00	Flow (cfs)	133.92	713.08
Top Width (ft)	85.29	Top Width (ft)	53.08	32.21
Vel Total (ft/s)	4.59	Avg. Vel. (ft/s)	1.99	6.09
Max Chl Dpth (ft)	5.01	Hydr. Depth (ft)	1.27	3.63
Conv. Total (cfs)	13420.6	Conv. (cfs)	2122.0	11298.6
Length Wtd. (ft)	110.89	Wetted Per. (ft)	53.32	34.15
Min Ch El (ft)	848.00	Shear (1b/sq ft)	0.31	0.85
Alpha	1.51	Stream Power (1b/ft s)	168.00	0.00
0.00 Freth Loss (ft)	0.47	Cum Volume (acre-ft)	0.49	2.61
0.45 C & E Loss (ft) 0.35	0.01	Cum SA (acres)	0.42	0.72

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	854.18	Element	Left 0B	Channel
Right OB Vel Head (ft)	0.54	wt. n-Val.	0.055	0.035
W.S. Elev (ft)	853.65	Reach Len. (ft)	120.00	109.00
100.00 Crit W.S. (ft)		Flow Area (sq ft)	104.51	138.10
E.G. Slope (ft/ft)	0.003836	Area (sq ft)	104.51	138.10
Q Total (cfs)	1143.00	Flow (cfs)	244.34	898.66
Top Width (ft)	96.39	Top width (ft)	63.02	33.36
Vel Total (ft/s)	4.71	Avg. Vel. (ft/s)	2.34	6.51
Max Chl Dpth (ft)	5.65	Hydr. Depth (ft)	1.66	4.14
Conv. Total (cfs)	18454.2	Conv. (cfs)	3945.0	14509.2
Length Wtd. (ft)	111.52	Wetted Per. (ft)	63.28	35.47
Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.40	0.93
Alpha	1.55	Stream Power (lb/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.41	Cum Volume (acre-ft)	0.80	3.03
0.69 C & E Loss (ft) 0.47	0.00	Cum SA (acres)	0.52	0.73

existing.rep CROSS SECTION OUTPUT Profile #50 Year

				-
E.G. Elev (ft)	854.69	Element	Left OB	Channe1
Right OB Vel Head (ft)	0.55	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	854.14	Reach Len. (ft)	120.00	109.00
100.00 Crit W.S. (ft)	•	Flow Area (sq ft)	137.40	154.72
0.07 E.G. Slope (ft/ft)	0.003615	Area (sq ft)	137.40	154.72
0.07 Q Total (cfs)	1387.00	Flow (cfs)	346.86	1040.12
0.02 Top Width (ft)	105.62	Top Width (ft)	70.65	34.00
0.97 Vel_Total (ft/s)	4.75	Avg. Vel. (ft/s)	2.52	6.72
0.27 Max Chl Doth (ft)	6.14	Hydr. Depth (ft)	1.94	4.55
0.07 Conv. Total (cfs)	23068.1	Conv. (cfs)	5768.9	17298.9
0.3 Length Wtd. (ft)	111.87	Wetted Per. (ft)	70.92	36.20
0.98 Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.44	0.96
0.02 Alpha	1.57	Stream Power (1b/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.37	Cum Volume (acre-ft)	1.05	3.32
0.87 C & E Loss (ft) 0.51	0.00	Cum SA (acres)	0.59	0.73
CROSS SECTION OUTPUT	Profile #100 Yo	ear		
	·	_		
E.G. Elev (ft) Right OB	855.20	Element	Left OB	Channe1
Vel Head (ft) 0.055	0.56	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 100.00	854.64	Reach Len. (ft)	120.00	109.00
Crit W.S. (ft) 1.44		Flow Area (sq ft)	174.92	171.83
E.G. Slope (ft/ft) 1.44	0.003317	Area (sq ft)	174.92	171.83
Q Total (cfs) 1.05	1651.00	Flow (cfs)	463.36	1186.59
Top Width (ft) 4.49	116.94	Top Width (ft)	78.45	34.00
vel Total (ft/s) 0.72	4.74	Avg. Vel. (ft/s)	2.65	6.91

Page 8

Hydr. Depth (ft)

Wetted Per. (ft)

Shear (lb/sq ft)

Conv. (cfs)

5.05

20603.5

36.20

0.98

2.23

8045.6

78.74

0.46

6.64

28667.3

112.13

848.00

0.72

Max Chl Dpth (ft) 0.32 Conv. Total (cfs)

Length wtd. (ft)

Min Ch El (ft) 0.07

•	*			
Alpha	1.61	existing.rep Streām Power (lb/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.34	Cum Volume (acre-ft)	1.31	3.58
1.04 C & E Loss (ft) 0.55	0.01	Cum SA (acres)	0.65	0.73
CROSS SECTION				
RIVER: Bluestone Creek REACH: 1	RS: 1300			
INPUT Description: X-1300 Station Elevation Data Sta Elev Sta 0 860 45 110 848 116 183 876	num= Elev 852 848	11 Sta Elev Sta 66 851 80 123 848 129	Elev Sta 851 100 851 147	Elev 850 854
Manning's n Values Sta n Val Sta O .055 100	num= n Val .035	3 Sta n Val 129 .055		
Bank Sta: Left Right 100 129	Lengths:	Left Channel Right 95 88 88	Coeff Contr. .1	Expan.
CROSS SECTION OUTPUT Pro	file #2 Ye	ar		
E.G. Elev (ft)	851.46	Element	Left OB	Channel
Right OB Vel Head (ft)	0.67	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	850.78	Reach Len. (ft)	95.00	88.00
88.00 Crit W.S. (ft)	850.53	Flow Area (sq ft)	6.12	61.73
E.G. Slope (ft/ft)	0.009134	Area (sq ft)	6.12	61.73
Q Total (cfs)	419.00	Flow (cfs)	8.44	410.56
Top Width (ft)	44.21	Top Width (ft)	15.65	28.56
Vel Total (ft/s)	6.18	Avg. Vel. (ft/s)	1.38	6.65
Max Chl Dpth (ft)	2.78	Hydr. Depth (ft)	0.39	2.16
Conv. Total (cfs)	4384.1	Conv. (cfs)	88.4	4295.8
Length Wtd. (ft)	88.07	Wetted Per. (ft)	15.67	29.42
Min Ch El (ft)	848.00	Shear (1b/sq ft)	0.22	1.20
Alpha	1.14	Stream Power (1b/ft s)	183.00	0.00
0.00 Frctn Loss (ft)	0.32	Cum Volume (acre-ft)	0.04	1.44
0.16 C & E Loss (ft)	0.14	Cum SA (acres)	0.07	0.61
0.13		Page 9		

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	853.03	Element	Left OB	Channe1
Right OB Vel Head (ft)	0.57	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 88.00	852.45	Reach Len. (ft)	95.00	88.00
Crit W.S. (ft) 6.34		Flow Area (sq ft)	80.07	110.17
E.G. Slope (ft/ft) 6.34	0.004402	Area (sq ft)	80.07	110.17
Q Total (cfs) 9.11	928.00	Flow (cfs)	178.66	740.23
Top Width (ft)	95.28	Top Width (ft)	57.56	29.00
8.73 Vel Total (ft/s)	4.72	Avg. Vel. (ft/s)	2.23	6.72
1.44 Max Chl Dpth (ft) 0.73	4.45	Hydr. Depth (ft)	1.39	3.80
Conv. Total (cfs) 137.4	13987.3	Conv. (cfs)	2692.8	11157.1
Length Wtd. (ft) 8.85	88.72	Wetted Per. (ft)	57.64	29.91
Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.38	1.01
0.20 Alpha	1.66	Stream Power (1b/ft s)	183.00	0.00
0.00 Frctn Loss (ft)	0.26	Cum Volume (acre-ft)	0.29	2.32
0.44 C & E Loss (ft) 0.34	0.06	Cum SA (acres)	0.27	0.65

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft) Right OB	853.78	Element	Left OB	Channel
Vel Head (ft) 0.055	0.54	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 88.00	853.24	Reach Len. (ft)	95.00	88.00
Crit W.S. (ft) 15.03		Flow Area (sq ft)	126.92	132.91
E.G. Slope (ft/ft) 15.03	0.003468	Area (sq ft)	126.92	132.91
Q Total (cfs)	1249.00	Flow (cfs)	325.15	898.30
25.54 Top Width (ft)	104.40	Top Width (ft) Page 10	61.97	29.00

13.43	•			
Vel Total (ft/s) 1.70	4.54	Avg. Vel. (ft/s)	2.56	6.76
Max Chl Dpth (ft)	5.24	Hydr. Depth (ft)	2.05	4.58
1.12 Conv. Total (cfs)	21207.9	Conv. (cfs)	5521.0	15253.1
433.7 Length Wtd. (ft)	89.02	Wetted Per. (ft)	62.12	29.91
13.62 Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.44	0.96
0.24 Alpha	1.68	Stream Power (lb/ft s)	183.00	0.00
0.00 Frctn Loss (ft)	0.24	Cum Volume (acre-ft)	0.48	2.69
0.68 C & E Loss (ft)	0.02	Cum SA (acres)	0.35	0.65
0.45	0.02	cum on (acres)	0.39	0.03

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	854.31	Element	Left OB	Channel
Right OB Vel Head (ft)	0.54	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	853.77	Reach Len. (ft)	95.00	88.00
88.00 Crit W.S. (ft)		Flow Area (sq ft)	160.84	148.41
23.07 E.G. Slope (ft/ft)	0.003128	Area (sq ft)	160.84	148.41
23.07 Q Total (cfs)	1512.00	Flow (cfs)	443.82	1025.24
42.94 Top Width (ft)	110.61	Top Width (ft)	64.97	29.00
16.64 Vel Total (ft/s)	4.55	Avg. Vel. (ft/s)	2.76	6.91
1.86 Max Chl Dpth (ft)	5.77	Hydr. Depth (ft)	2.48	5.12
1.39 Conv. Total (cfs)	27035.0	Conv. (cfs)	7935.6	18331.6
767.8 Length Wtd. (ft)	89.18	Wetted Per. (ft)	65.18	29.91
16.87 Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.48	0.97
0.27 Alpha	1.68	Stream Power (lb/ft s)	183.00	0.00
0.00 Frctn Loss (ft)	0.23	Cum Volume (acre-ft)	0.64	2.94
0.84 C & E Loss (ft) 0.49	0.00	Cum SA (acres)	0.40	0.65

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	854.86	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.54	Wt. n-Val.	0.055	0.035

•		existing.rep		
W.S. Elev (ft) 88.00		Reach Len. (ft)	95.00	88.00
Crit W.S. (ft) 32.81		Flow Area (sq ft)	197.13	164.23
E.G. Slope (ft/ft) 32.81	0. 002826	Area (sq ft)	197.13	164.23
Q Total (cfs)	1796.00	Flow (cfs)	574.00	1153.82
68.18 Top Width (ft)	115.56	Top Width (ft)	68.04	29.00
18.52 Vel Total (ft/s)	4.56	Avg. Vel. (ft/s)	2.91	7.03
2.08 Max Chl Dpth (ft)	6.32	Hydr. Depth (ft)	2.90	5.66
1.77 Conv. Total (cfs) 1282.5	33782.7	Conv. (cfs)	10796.9	21703.3
Length Wtd. (ft)	89.32	Wetted Per. (ft)	68.29	29.91
18.86 Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.51	0.97
0.31 Alpha	1.67	Stream Power (lb/ft	s) 183.00	0.00
0.00 Frctn Loss (ft) 1.00	0.22	Cum Volume (acre-ft)	0.80	3.16
C & E Loss (ft) 0.52	0.01	Cum SA (acres)	0.44	0.65
0.52		•		
CROSS SECTION				
	. •			
RIVER: Bluestone Cre REACH: 1	ek RS: 1200			
INPUT Description: X-1200				
Station Elevation Da Sta Elev	ta num= Sta Elev	12 Sta Elev Sta	Elev Sta	Elev
0 857 102 848	27 856 115 847	58 854 79 125 848 134	852 94 848 137	851 850
149 855	190 876	123 040 134	040 137	630
Manning's n Values Sta n Val	num= Sta n Val	3 Sta n Val		
	94 .035	137 .055		
Bank Sta: Left Rig 94 1	ht Lengths: 37	Left Channel Right 35 44 47	Coeff Contr. .1	Expan.
CROSS SECTION OUTPUT	Profile #2 Ye	ar		
E.G. Elev (ft)	850.99	Element	Left OB	Channel
Right OB Vel Head (ft)	0.20	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	850.79	Reach Len. (ft)	35.00	44.00
47.00 Crit W.S. (ft)		Flow Area (sq ft)		116.65
0.75 E.G. Slope (ft/ft)	0.001926	Area (sq ft)		116.65
0.75	-	Page 12		

		existing.rep		
Q Total (cfs) 0.46	419.00	Flow (cfs)		418.54
Top Width (ft)	44.35	Top Width (ft)		42.45
vel Total (ft/s) 0.61	3.57	Avg. Vel. (ft/s)		3.59
Max Chl Dpth (ft)	3.79	Hydr. Depth (ft)		2.75
0.40 Conv. Total (cfs)	9547.7	Conv. (cfs)		9537.3
10.4 Length Wtd. (ft)	44.00	Wetted Per. (ft)		43.65
2.06 Min Ch El (ft)	847.00	Shear (lb/sq ft)		0.32
0.04 Alpha	1.01	Stream Power (1b/ft s)	190.00	0.00
0.00 Freth Loss (ft)	0.15	Cum Volume (acre-ft)	0.03	1.26
0.16 C & E Loss (ft) 0.13	0.03	Cum SA (acres)	0.05	0.54

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	852.71	Element	Left OB	Channe 1
Right OB Vel Head (ft)	0.37	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.34	Reach Len. (ft)	35.00	44.00
47.00 Crit W.S. (ft)		Flow Area (sq ft)	13.13	182.95
6.55 E.G. Slope (ft/ft)	0.002053	Area (sq ft)	13.13	182.95
6.55 Q Total (cfs)	928.00	Flow (cfs)	12.76	906.81
8.43 Top Width (ft)	67.14	Top Width (ft)	18.53	43.00
5.61 Vel Total (ft/s)	4.58	Avg. Vel. (ft/s)	0.97	4.96
1.29 Max Chl Dpth (ft)	5.34	Hydr. Depth (ft)	0.71	4.25
1.17 Conv. Total (cfs)	20480.0	Conv. (cfs)	281.6	20012.3
186.0 Length Wtd. (ft)	43.82	Wetted Per. (ft)	18.58	44.24
6.07 Min Ch El (ft)	847.00	Shear (1b/sq ft)	0.09	0.53
0.14 Alpha	1.15	Stream Power (1b/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.14	Cum Volume (acre-ft)	0.19	2.02
0.43 C & E Loss (ft) 0.32	0.04	Cum SA (acres)	0.19	0.57

warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	853.51	Element	Left OB	Channel
Right OB Vel Head (ft)	0.46	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	853.05	Reach Len. (ft)	35.00	44.00
47.00 Crit_w.s. (ft)		Flow Area (sq ft)	29.08	213.72
11.17 E.G. Slope (ft/ft)	0.002116	Area (sq ft)	29.08	213.72
11.17 Q Total (cfs)	1249.00	Flow (cfs)	38.82	1192.74
17.45 Top Width (ft)	76.37	Top Width (ft)	26.04	43.00
7.32 Vel Total (ft/s)	4.92	Avg. Vel. (ft/s)	1.33	5.58
1.56 Max Chl Dpth (ft)	6.05	Hydr. Depth (ft)	1.12	4.97
1.53 Conv. Total (cfs)	27153.5	Conv. (cfs)	843.8	25930.3
379.3 Length Wtd. (ft)	43.66	Wetted Per. (ft)	26.13	44.24
7.93 Min Ch El (ft)	847.00	Shear (lb/sq ft)	0.15	0.64
0.19 Alpha	1.23	Stream Power (1b/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.14	Cum Volume (acre-ft)	0.31	2.34
0.65 C & E Loss (ft)	0.05	Cum SA (acres)	0.25	0.58
0.43	0.03	Cum SA (acres)	0.23	5.56

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	854.08	Element	Left OB	Channel
Right OB Vel Head (ft)	0.53	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	853.55	Reach Len. (ft)	35.00	44.00
47.00 Crit W.S. (ft) 15.09		flow Area (sq ft)	43.24	234.98
E.G. Slope (ft/ft) 15.09	0.002180	Area (sq ft)	43.24	234.98
Q Total (cfs) 26.43	1512.00	Flow (cfs)	67.60	1417.97
Top Width (ft) 8.51	82.75	Top Width (ft)	31.23	43.00
0.71		1 A		

Vel Total (ft/s)	5.15	existing.rep Avg. Vel. (ft/s)	1.56	6.03
1.75	3.43	Avg. ver. (10/3)	1.30	0.03
Max Chl Dpth (ft) 1.77	6.55	Hydr. Depth (ft)	1.38	5.46
Conv. Total (cfs) 566.2	32385.3	Conv. (cfs)	1447.9	30371.2
Length Wtd. (ft) 9.22	43.54	Wetted Per. (ft)	31.34	44.24
Min Ch El (ft) 0.22	847.00	Shear (lb/sq ft)	0.19	0.72
Alpha 0.00	1.29	Stream Power (1b/ft s)	190.00	0.00
Fretn Loss (ft) 0.80	0.15	Cum Volume (acre-ft)	0.41	2.55
C & E Loss (ft)	0.06	Cum SA (acres)	0.29	0.58

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	854.62	Element	Left OB	Channe1
Right OB Vel Head (ft) 0.055	0.60	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 47.00	854.02	Reach Len. (ft)	35.00	44.00
Crit W.S. (ft) 19.40		Flow Area (sq ft)	59.25	255.40
E.G. Slope (ft/ft) 19.40	0.002246	Area (sq ft)	59.25	255.40
Q Total (cfs) 37.51	1796.00	Flow (cfs)	104.88	1653.61
Top Width (ft) 9.65	88.97	Top width (ft)	36.32	43.00
vel Total (ft/s) 1.93	5.38	Avg. Vel. (ft/s)	1.77	6.47
Max Chl Dpth (ft) 2.01	7.02	Hydr. Depth (ft)	1.63	5.94
Conv. Total (cfs) 791.5	37899.4	Conv. (cfs)	2213.2	34894.7
Length Wtd. (ft) 10.45	43.42	Wetted Per. (ft)	36.45	44.24
Min Ch El (ft) 0.26	847.00	Shear (lb/sq ft)	0.23	0.81
Alpha 0.00	1.34	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft) 0.95	0.15	Cum Volume (acre-ft)	0.52	2.74
C & E Loss (ft) 0.49	0.07	Cum SA (acres)	0.33	0.58

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Page 15

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Bluestone Creek

REACH: 1		RS: 1100						
INPUT Descriptio Station El Sta 0 118 158		num= Elev 856 848 869	12 Sta 67 140	Elev 854 848	Sta 92 142	Elev 852 849	Sta 113 148	Elev 850 850

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .055 113 .035 148 .055

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 113 148 80 58 55 .1 .3

CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	850.81	Element	Left OB	Channel
Right OB Vel Head (ft)	0.52	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	850.29	Reach Len. (ft)	80.00	58.00
55.00 Crit W.S. (ft)		Flow Area (sq ft)	0.43	72.02
0.07 E.G. Slope (ft/ft) 0.07	0.007496	Area (sq ft)	0.43	72.02
Q Total (cfs) 0.04	419.00	Flow (cfs)	0.27	418.69
Top Width (ft) 0.48	38.48	Top width (ft)	3.01	35.00
vel Total (ft/s) 0.58	5.78	Avg. Vel. (ft/s)	0.64	5.81
Max Chl Dpth (ft)	3.29	Hydr. Depth (ft)	0.14	2.06
0.14 Conv. Total (cfs) 0.5	4839.4	Conv. (cfs)	3.2	4835.8
Length Wtd. (ft) 0.56	58.01	Wetted Per. (ft)	3.02	36.21
Min Ch El (ft) 0.06	847.00	Shear (lb/sq ft)	0.07	0.93
Alpha	1.01	Stream Power (lb/ft s)	171.00	0.00
0.00 Frctn Loss (ft)	0.22	Cum Volume (acre-ft)	0.03	1.16
0.15 C & E Loss (ft) 0.13	0.08	Cum SA (acres)	0.05	0.50

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

existing.rep
This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	852.52	Element	Left OB	Channel
Right OB Vel Head (ft)	0.81	Wt. n-val.	0.055	0.035
0.055 W.S. Elev (ft)	851.72	Reach Len. (ft)	80.00	58.00
55.00 Crit W.S. (ft)		Flow Area (sq ft)	15.45	122.04
2.45 E.G. slope (ft/ft)	0.005904	Area (sq ft)	15.45	122.04
2.45 Q Total (cfs)	928.00	Flow (cfs)	28.86	894.99
4.15 Top Width (ft)	55.87	Top width (ft)	18.01	35.00
2.86 Vel Total (ft/s)	6.63	Avg. Vel. (ft/s)	1.87	7.33
1.69 Max Chl Dpth (ft)	4.72	Hydr. Depth (ft)	0.86	3.49
0.86 Conv. Total (cfs)	12077.0	Conv. (cfs)	375.6	11647.4
54.0 Length Wtd. (ft)	58.34	Wetted Per. (ft)	18.09	36.21
3.33 Min Ch El (ft)	847.00	Shear (lb/sq ft)	0.31	1.24
0.27 Alpha	1.18	Stream Power (lb/ft s)	171.00	0.00
0.00 Frctn Loss (ft)	0.25	Cum Volume (acre-ft)	0.18	1.87
0.42 C & E Loss (ft) 0.32	0.08	Cum SA (acres)	0.17	0.54

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	853.32	Element	Left OB	Channe
Right OB Vel Head (ft) 0.055	0.97	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 55.00	852.35	Reach Len. (ft)	80.00	58.00
Crit W.S. (ft) 4.59		Flow Area (sq ft)	29.04	144.15
E.G. Slope (ft/ft) 4.59	0.005832	Area (sq ft)	29.04	144.15
Q Total (cfs) 9.51	1249.00	Flow (cfs)	65.44	1174.05
Top Width (ft)	64.25	Top Width (ft)	25.34	35.00
vel Total (ft/s) 2.07	7.03	Avg. Vel. (ft/s)	2.25	8.14
Max Chl Dpth (ft) 1.17	5.35	Hydr. Depth (ft)	1.15	4.12
Conv. Total (cfs) 124.6	16355.1	Conv. (cfs)	856.9	15373.6
Length Wtd. (ft) 4.56	58.64	Wetted Per. (ft)	25.45	36.21
		Page 17		

Min Ch El (ft)	847.00	existing.rep Shear (lb/sq ft)	0.42	1.45
0.37 Alpha	1.27	Stream Power (1b/ft s)	171.00	0.00
0.00 Frctn Loss (ft)	0.27	Cum Volume (acre-ft)	0.29	2.16
0.64 C & E Loss (ft) 0.43	0.07	Cum SA (acres)	0.23	0.54
CROSS SECTION OUTPUT	Profile #50 Y	ear		
E.G. Elev (ft)	853.87	Element	Left OB	Channel
Right OB Vel Head (ft)	1.12	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.75	Reach Len. (ft)	80.00	58.00
55.00 Crit W.S. (ft)	852.17	Flow Area (sq ft)	40.26	158.25
6.30 E.G. Slope (ft/ft)	0.006038	Area (sq ft)	40.26	158.25
6.30 Q Total (cfs)	1512.00	Flow (cfs)	101.71	1395.52
14.76 Top width (ft)	69.96	Top Width (ft)	30.37	35.00
4.58 Vel Total (ft/s) 2.34	7.38	Avg. Vel. (ft/s)	2.53	8.82
Max Chl Dpth (ft) 1.37	5.75	Hydr. Depth (ft)	1.33	4.52
Conv. Total (cfs)	19458.7	Conv. (cfs)	1309.0	17959.7
Length Wtd. (ft) 5.34	58.86	Wetted Per. (ft)	30.50	36.21
Min Ch El (ft) 0.44	847.00	Shear (1b/sq ft)	0.50	1.65
Alpha 0.00	1.33	Stream Power (lb/ft s)	171.00	0.00
Frctn Loss (ft) 0.79	0.29	Cum Volume (acre-ft)	0.38	2.35
C & E Loss (ft) 0.46	0.07	Cum SA (acres)	0.27	0.54
CROSS SECTION OUTPUT	Profile #100	Year		
E.G. Elev (ft)	854.40	Element	Left OB	Channe?
Right OB Vel Head (ft) 0.055	1.29	wt. n-Val.	0.055	0.035
W.S. Elev (ft) 55.00	853.11	Reach Len. (ft)	80.00	58.00
Crit W.S. (ft) 8.08	852.61	Flow Area (sq ft)	52.15	170.99
E.G. Slope (ft/ft) 8.08	0.006351	Area (sq ft)	52.15	170.99
Q Total (cfs) 21.10	1796.00	Flow (cfs)	146.32	1628.59
Top Width (ft)	75.12	Top Width (ft) Page 18	34.93	35.00

Top Width (ft) Page 18

				,	
ቀነ	7	St	٦	ทด	rep
•	• •		•		

5.19				
Vel Total (ft/s) 2.61	7.77	Avg. Vel. (ft/s)	2.81	9.52
Max Chl Dpth (ft) 1.56	6.11	Hydr. Depth (ft)	1.49	4.89
Conv. Total (cfs) 264.7	22536.2	Conv. (cfs)	1836.0	20435.5
Length Wtd. (ft)	59.09	Wetted Per. (ft)	35.07	36.21
6.05 Min Ch El (ft)	847.00	Shear (1b/sq ft)	0.59	1.87
0.53 Alpha	1.38	Stream Power (1b/ft s)	171.00	0.00
0.00 Fretn Loss (ft)	0.32	Cum Volume (acre-ft)	0.48	2.52
0.94 C & E Loss (ft) 0.49	0.06	Cum SA (acres)	0.30	0.54
V. 73				

CROSS SECTION

RIVER:	Bluestone	Creek

REACH: 1 RS: 1000

INPUT

Des	cri	ption	: X-10	000

Station El Sta 0	Elev 857	Sta 9	num= Elev 856	10 Sta 17	Elev 855	Sta 35	Elev 853	Sta 60	Elev 851
62	847	91	847	95 3	850	111	853	125	863

Manning's n Values num= 3
Sta n Val Sta n Val
0 .055 60 .035 95 .055

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 60 95 25 69 95 .1 .3

CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	850.51	Element	Left OB	Channel
Right OB Vel Head (ft)	0.25	Wt. n-Val.		0.035
0.055 W.S. Elev (ft) 95.00	850.25	Reach Len. (ft)	25.00	69.00
Crit W.S. (ft) 0.17		Flow Area (sq ft)		104.04
E.G. Slope (ft/ft) 0.17	0.002319	Area (sq ft)		104.04
Q Total (cfs) 0.06	419.00	Flow (cfs)		418.94
Top Width (ft) 1.36	35, 98	Top Width (ft)		34.63
vel Total (ft/s) 0.33	4.02	Avg. Vel. (ft/s)		4.03
Max Chl Dpth (ft) 0.13	3.25	Hydr. Depth (ft)		3.00
Conv. Total (cfs)	8700.4	Conv. (cfs)		8699.3

		existing.rep		
Length Wtd. (ft) 1.38	68.86	existing.rep Wetted Per. (ft)		37.64
Min Ch El (ft) 0.02	847.00	Shear (lb/sq ft)		0.40
Alpha 0.00	1.00	Stream Power (1b/ft s)	125.00	0.00
Frctn Loss (ft) 0.15	0.27	Cum Volume (acre-ft)	0.03	1.04
C & E Loss (ft) 0.12	0.04	Cum SA (acres)	0.04	0.45

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	852.20	Element	Left OB	Channel
Right OB Vel Head (ft)	0.55	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.64	Reach Len. (ft)	25.00	69.00
95.00 Crit W.S. (ft)		Flow Area (sq ft)	2.60	152.57
7.21 E.G. Slope (ft/ft)	0.003190	Area (sq ft)	2.60	152.57
7.21 Q Total (cfs)	928.00	Flow (cfs)	1.86	916.59
9.55 Top_width (ft)	51.83	Top Width (ft)	8.06	35.00
8.77 Vel_Total (ft/s)	5.72	Avg. Vel. (ft/s)	0.72	6.01
1.32 Max Chl Dpth (ft)	4.64	Hydr. Depth (ft)	0.32	4.36
0.82 Conv. Total (cfs)	16429.6	Conv. (cfs)	32.9	16227.6
169.1 Length Wtd. (ft)	67.57	Wetted Per. (ft)	8.08	38.47
8.92 Min Ch El (ft)	847.00	Shear (lb/sq ft)	0.06	0.79
0.16 Alpha	1.09	Stream Power (lb/ft s)	125.00	0.00
0.00 Frctn Loss (ft)	0.32	Cum Volume (acre-ft)	0.16	1.69
0.41 C & E Loss (ft) 0.31	0.04	Cum SA (acres)	0.15	0.49

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	852.98	Element	Left OB	Channel
Right OB Vel Head (ft)	0.74	Wt. n-Val. Page 20	0.055	0.035

0.055				
W.S. Elev (ft)	852.24	Reach Len. (ft)	25.00	69.00
95.00 Crit w.s. (ft)		Flow Area (sq ft)	9.64	173.47
13.40 E.G. Slope (ft/ft)	0.003649	Area (sq ft)	9.64	173.47
13.40 Q Total (cfs)	1249.00	Flow (cfs)	11.43	1214.23
23.34 Top width (ft)	62.48	Top Width (ft)	15.53	35.00
11.96 Vel Total (ft/s)	6.36	Avg. Vel. (ft/s)	1.19	7.00
1.74 Max Chl Dpth (ft)	5.24	Hydr. Depth (ft)	0.62	4.96
1.12 Conv. Total (cfs)	20676.4	Conv. (cfs)	189.2	20100.8
386.3 Length Wtd. (ft)	67.21	Wetted Per. (ft)	15.58	38.47
12.17 Min Ch El (ft)	847.00	Shear (1b/sq ft)	0.14	1.03
0.25 Alpha	1.18	Stream Power (1b/ft s)	125.00	0.00
0.00 Frctn Loss (ft)	0.37	Cum Volume (acre-ft)	0.25	1.95
0.63 C & E Loss (ft)	0.06	Cum SA (acres)	0.19	0.49
0.42	0.00	cum SA (acres)	0.13	0.49

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 Year

0.055

E.G. Elev (ft)	853.52	Element	Left OB	Channel
Right OB Vel Head (ft)	0.90	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.61	Reach Len. (ft)	25.00	69.00
95.00 Crit W.S. (ft)		Flow Area (sq ft)	16.23	186.39
18.18 E.G. Slope (ft/ft)	0.004099	Area (sq ft)	16.23	186.39
18.18 Q Total (cfs)	1512.00	Flow (cfs)	24.25	1450.61
37.14 Top width (ft)	69.07	Top Width (ft)	20.14	35.00
13.93 Vel Total (ft/s)	6.85	Avg. Vel. (ft/s)	1.49	7.78
2.04 Max Chl Dpth (ft)	5.61	Hydr. Depth (ft)	0.81	5.33
1.31 Conv. Total (cfs)	23616.7	Conv. (cfs)	378.7	22657.8
580.1 Length Wtd. (ft)	66.88	Wetted Per. (ft)	20.21	38.47
14.17 Min Ch El (ft)	847.00	Shear (1b/sq ft)	0.21	1.24
0.33		Page 21		

Alpha 0.00	1.24	existing.rep Stream Power (lb/ft s)	125.00	0.00
Frctn Loss (ft)	0.39	Cum Volume (acre-ft)	0.33	2.12
C & E Loss (ft)	0.05	Cum SA (acres)	0.22	0.49

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	854.02	Element .	Left OB	Channel
Right OB		_		
Vel_Head (ft)	1.09	Wt. n-Val.	0.055	0.035
0.055				
W.S. Elev (ft)	852.93	Reach Len. (ft)	25.00	69.00
95.00				
Crit W.S. (ft)		Flow Area (sq ft)	23.33	197.63
22.93				
<pre>E.G. Slope (ft/ft)</pre>	0.004634	Area (sq ft)	23.33	197.63
22.93				
Q Total (cfs)	1796.00	Flow (cfs)	41.85	1700.36
53.79		(3.3)		
Top Width (ft)	74.79	Top Width (ft)	24.15	35.00
15.64		10p 1114411 (1.4)	21123	33.00
Vel Total (ft/s)	7.36	Avg. Vel. (ft/s)	1.79	8.60
2.35	,.50	Avg. ver. (11/3)	1.73	0.00
Max Chl Dpth (ft)	5.93	Hydr. Depth (ft)	0.97	5.65
1.47	3.33	nyur. Depth (rt)	0.97	3.03
Conv. Total (cfs)	26384.4	Conv. (cfs)	614.8	24979.3
790.3	20304.4	conv. (crs)	.014.0	243/3.3
Length Wtd. (ft)	66 64	Wattad Dan (ft)	24 22	20 47
	66.64	Wetted Per. (ft)	24.23	38.47
15.91	947 00	chan (3h/on fe)	0.30	1 40
Min Ch El (ft)	847.00	Shear (lb/sq ft)	0.28	1.49
0.42	1 20	54 · · · · · · · · · · · · · · · · · · ·	435.00	
Alpha	1.30	Stream Power (lb/ft s)	125.00	0.00
0.00				
Frctn Loss (ft)	0.41	Cum Volume (acre-ft)	0.41	2.28
0.92				
C & E Loss (ft)	0.04	Cum SA (acres)	0.25	0.50
0.47				

CROSS SECTION

RIVER: Bluestone Creek REACH: 1 RS: 900

Description: X-900

	- : : :		num= Elev 854	12 Sta 29	Elev 854	Sta 52	Elev 850	Sta 70	Elev 849
71		80	846	87	846	100	850	128	852
				Page	e 22				

148	854	157	860	existing.rep		
Manning's n Sta 1 0	Values val .055	Sta 70	num≕ n Val .035	3 Sta n Val 100 .055		
Bank Sta: Lo	eft R 70	ight 100	Lengths:	Left Channel Righ 20 34 7	t Coeff Contr. 5 .1	Expan.
CROSS SECTIO	ON OUTP	UT Pro	ofile #2 Yo	ear		
E.G. Elev Right OB	(ft)		850.19	Element	Left OB	Channel
Vel Head	(ft)		0.65	wt. n-val.	0.055	0.035
W.S. Elev 75.00	(ft)		849.54	Reach Len. (ft)	20.00	34.00
Crit W.S.	(ft)		849.13	Flow Area (sq ft	2.63	64.05
E.G. Slope	e (ft/f	t)	0.008345	Area (sq ft)	2.63	64.05
Q Total (d	cfs)		419.00	Flow (cfs)	2.71	416.29
Top Width	(ft)		38.23	Top Width (ft)	9.73	28.51
Vel Total	(ft/s)		6.28	Avg. Vel. (ft/s)	1.03	6.50
Max Chl Dp	oth (ft)	3.54	Hydr. Depth (ft)	0.27	2.25
Conv. Tota	al (cfs)	4586.7	Conv. (cfs)	29.6	4557.1
Length Wto	d. (ft)		35.65	Wetted Per. (ft)	9.74	29.53
Min Ch El	(ft)		846.00	Shear (lb/sq ft)	0.14	1.13
Alpha			1.06	Stream Power (1b	/ft s) 157.00	0.00
0.00 Frctn Loss	(ft)		0.09	Cum Volume (acre	-ft) 0.03	0.91
0.15 C & E Loss 0.12	(ft)		0.16	Cum SA (acres)	0.04	0.40

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	851.83	Element	Left OB	Channe 1
Right OB Vel Head (ft) 0.055	1.00	wt. n-val.	0.055	0.035
W.S. Elev (ft)	850.84	Reach Len. (ft)	20.00	34.00
75.00 Crit W.S. (ft) 4.90	850.60	Flow Area (sq ft)	26.07	102.60
E.G. Slope (ft/ft)	0.007815	Area (sq ft)	26.07	102.60

ex	1 S	t	ın	a	٠	rep

4.90		·		
Q Total (cfs)	928.00	Flow (cfs)	67.88	853.58
6.54 Top Width (ft) 11.71	64.53	Top Width (ft)	22.81	30.00
vel Total (ft/s) 1.33	6.95	Avg. Vel. (ft/s)	2.60	8.32
Max Chl Dpth (ft)	4.84	Hydr. Depth (ft)	1.14	3.42
0.42 Conv. Total (cfs) 73.9	10497.6	Conv. (cfs)	767.9	9655.8
Length Wtd. (ft)	37.25	Wetted Per. (ft)	22.91	31.09
11.74 Min Ch El (ft) 0.20	846.00	Shear (lb/sq ft)	0.56	1.61
Alpha	1.33	Stream Power (lb/ft s)	157.00	0.00
0.00 Frctn Loss (ft) 0.40	0.08	Cum Volume (acre-ft)	0.15	1.49
C & E Loss (ft)	0.26	Cum SA (acres)	0.14	0.44

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	852.56	Element	Left OB	Channel
Right OB		-		
Vel_Head (ft)	1.32	Wt. n-Val.	0.055	0.035
0.055	054 22	(5t)	20.00	34.00
W.S. Elev (ft)	851.23	Reach Len. (ft)	20.00	34.00
75.00	054 00	-2 (5.)	25 50	114 50
Crit_W.S. (ft)	851.23	Flow Area (sq ft)	35.58	114.50
10.65				
<pre>E.G. Slope (ft/ft)</pre>	0.009216	Area (sq ft)	35.58	114.50
10.65				
Q Total (cfs)	1249.00	Flow (cfs)	116.04	1112.99
19.98		-		
Top Width (ft)	72.36	Top Width (ft)	25.09	30.00
17.27		, , ,		
vel Total (ft/s)	7.77	Avg. Vel. (ft/s)	3.26	9.72
1.88	, , , ,	Avg. 1011 (10,5)	3.20	3172
Max Chl Dpth (ft)	5.23	Hydr. Depth (ft)	1.42	3.82
0.62	3.23	nyui: Deptii (it)	1.72	3.02
Conv. Total (cfc)	12010 7	conv. (cfc)	1208.7	11593.9
Conv. Total (cfs)	13010.7	Conv. (cfs)	1200.7	11393.9
208.1	37.00		25 22	31 00
Length Wtd. (ft)	37.88	Wetted Per. (ft)	25.23	31.09
17.31				
Min Ch El (ft)	846.00	Shear (lb/sq ft)	0.81	2.12
0.35				
Alpha	1.41	Stream Power (lb/ft s)	157.00	0.00
0.00		• • •		
Frctn Loss (ft)	0.09	Cum Volume (acre-ft)	0.24	1.72
0.60	0.03	Cam 70.ame (acre 12)		
C & E Loss (ft)	0.35	Cum SA (acres)	0.18	0.44
0.38	0.33	Cum JA (acres)	0.10	0.77
0.30				

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance)

is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a

valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	853.08	Element	Left OB	Channel
Right OB	1 41			
Vel Head (ft) 0.055	1.41	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 75.00	851.67	Reach Len. (ft)	20.00	34.00
Crit W.S. (ft) 19.43	851.67	Flow Area (sq ft)	46.97	127.48
E.G. Slope (ft/ft) 19.43	0.008785	Area (sq ft)	46.97	127.48
Q Total (cfs) 43.48	1512.00	Flow (cfs)	168.91	1299.60
Top Width (ft) 23.32	80.90	Top width (ft)	27.58	30.00
Vel Total (ft/s) 2.24	7.80	Avg. Vel. (ft/s)	3.60	10.19
Max Chl Dpth (ft) 0.83	5.67	Hydr. Depth (ft)	1.70	4.25
Conv. Total (cfs) 463.9	16131.5	Conv. (cfs)	1802.1	13865.5
Length Wtd. (ft) 23.38	38.36	Wetted Per. (ft)	27.75	31.09
Min Ch El (ft) 0.46	846.00	Shear (lb/sq ft)	0.93	2.25
Alpha 0.00	1.49	Stream Power (lb/ft s)	157.00	0.00
Frctn Loss (ft) 0.73	0.09	Cum Volume (acre-ft)	0.31	1.87
C & E Loss (ft) 0.41	0.37	Cum SA (acres)	0.21	0.44

Warning: The energy equation could not be balanced within the specified number of

iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

existing.rep surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #100 Year

853.57	Element	Left OB	Channel
1 50	1.25	0.055	0.025
1.50	wt. n-val.	0.055	0.035
852.08	Reach Len. (ft)	20.00	34.00
852.08	Flow Area (sq ft)	58.77	139.80
0.008494	Area (sq ft)	58.77	139.80
1796.00	Flow (cfs)	228.39	1490.19
88.71	Top Width (ft)	29.94	30.00
7.85	Avg. Vel. (ft/s)	3.89	10.66
6.08	Hydr. Depth (ft)	1.96	4.66
19487.3	Conv. (cfs)	2478.1	16169.2
38.81	Wetted Per. (ft)	30.15	31.09
846.00	Shear (lb/sq ft)	1.03	2.38
1.57	Stream Power (lb/ft s)	157.00	0.00
0.09	Cum Volume (acre-ft)	0.38	2.01
0.39	Cum SA (acres)	0.23	0.44
	1.50 852.08 852.08 0.008494 1796.00 88.71 7.85 6.08 19487.3 38.81 846.00 1.57 0.09	1.50 Wt. n-Val. 852.08 Reach Len. (ft) 852.08 Flow Area (sq ft) 0.008494 Area (sq ft) 1796.00 Flow (cfs) 88.71 Top Width (ft) 7.85 Avg. Vel. (ft/s) 6.08 Hydr. Depth (ft) 19487.3 Conv. (cfs) 38.81 Wetted Per. (ft) 846.00 Shear (lb/sq ft) 1.57 Stream Power (lb/ft s) 0.09 Cum Volume (acre-ft)	1.50 Wt. n-Val. 0.055 852.08 Reach Len. (ft) 20.00 852.08 Flow Area (sq ft) 58.77 0.008494 Area (sq ft) 58.77 1796.00 Flow (cfs) 228.39 88.71 Top Width (ft) 29.94 7.85 Avg. Vel. (ft/s) 3.89 6.08 Hydr. Depth (ft) 1.96 19487.3 Conv. (cfs) 2478.1 38.81 Wetted Per. (ft) 30.15 846.00 Shear (lb/sq ft) 1.03 1.57 Stream Power (lb/ft s) 157.00 0.09 Cum Volume (acre-ft) 0.38

warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth. defaulted to critical depth.

CROSS SECTION

RIVER: Bluestone Creek

REACH: 1 RS: 800

INPUT

Description: X-800

Station Elevation Data num=

Sta Elev 0 854 89 846.2 216 856	Sta Elev 19 852 97 846.2 233 858	existing.rep Sta Elev Sta 39 850 63 107 848 163 245 859	Elev Sta 848 80 850 188	Elev 847 851
Manning's n Values Sta n Val O .055	num= Sta n Val 63 .035	3 Sta n Val 107 .055		
Bank Sta: Left Righ 63 10	07	Left Channel Right 90 48 15	Coeff Contr. .1	Expan. .3
CROSS SECTION OUTPUT	Profile #2 Ye	ear		
E.G. Elev (ft)	849.94	Element	Left OB	Channel
Right OB Vel Head (ft)	0.11	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 15.00	849.83	Reach Len. (ft)	90.00	48.00
13.00 Crit W.S. (ft) 46.85		Flow Area (sq ft)	20.08	124.99
E.G. Slope (ft/ft) 46.85	0.001159	Area (sq ft)	20.08	124.99
Q Total (cfs) 40.58	419.00	Flow (cfs)	17.36	361.06
Top Width (ft) 51.22	117.17	Top Width (ft)	21.95	44.00
Vel Total (ft/s) 0.87	2.18	Avg. Vel. (ft/s)	0.86	2.89
0.87 Max Chl Dpth (ft) 0.91	3.63	Hydr. Depth (ft)	0.91	2.84
Conv. Total (cfs) 1192.1	12309.0	Conv. (cfs)	509.9	10607.0
Length Wtd. (ft) 51.25	47.27	Wetted Per. (ft)	22.03	44.23
Min Ch El (ft)	846.20	Shear (lb/sq ft)	0.07	0.20
0.07 Alpha	1.53	Stream Power (1b/ft s	245.00	0.00
0.00 Frctn Loss (ft)	0.07	Cum Volume (acre-ft)	0.02	0.84
0.11 C & E Loss (ft) 0.08	0.01	Cum SA (acres)	0.03	0.37
CROSS SECTION OUTPUT	Profile #10 Y	'ear		
E.G. Elev (ft)	851.50	Element	Left OB	Channe1
Right OB Vel Head (ft)	0.14	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.36	Reach Len. (ft)	90.00	48.00
15.00 Crit W.S. (ft)		Flow Area (sq ft)	65.92	192.37
154.09 E.G. Slope (ft/ft)	0.000918	Area (sq ft)	65.92	192.37
154.09 Q Total (cfs)	928.00	Flow (cfs)	78.23	659.41
190.36		Page 27		

• .		existing.rep		•
Top Width (ft) 83.02	164.63	existing.rep Top Width (ft)	37.61	44.00
vel Total (ft/s) 1.24	2.25	Avg. Vel. (ft/s)	1.19	3.43
Max Chl Dpth (ft) 1.86	5.16	Hydr. Depth (ft)	1.75	4.37
Conv. Total (cfs) 6282.7	30627.9	Conv. (cfs)	2582.0	21763.2
Length Wtd. (ft) 83.11	45.38	Wetted Per. (ft)	37.76	44.23
Min Ch El (ft) 0.11	846.20	Shear (1b/sq ft)	0.10	0.25
Alpha 0.00	1.73	Stream Power (lb/ft s)	245.00	0.00
Frctn Loss (ft) 0.26	0.07	Cum Volume (acre-ft)	0.13	1.37
C & E Loss (ft) 0.21	0.03	Cum SA (acres)	0.12	0.41

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	852.06	Element	Left OB	Channel
Right OB Vel Head (ft)	0.17	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.89	Reach Len. (ft)	90.00	48.00
15.00 Crit W.S. (ft) 199.11		Flow Area (sq ft)	87.37	215,82
<pre>E.G. Slope (ft/ft)</pre>	0.000998	Area (sq ft)	87.37	215.82
199.11 Q Total (cfs) 297.03	1249.00	Flow (cfs)	119.40	832.57
Top Width (ft) 86.00	172.94	Top width (ft)	42.94	44.00
vel Total (ft/s) 1.49	2.49	Avg. Vel. (ft/s)	1.37	3.86
Max Chl Dpth (ft) 2.32	5.69	Hydr. Depth (ft)	2.03	4.90
Conv. Total (cfs) 9404.5	39545.1	Conv. (cfs)	3780.3	26360.4
Length Wtd. (ft) 86.14	44.55	Wetted Per. (ft)	43.11	44.23
Min Ch El (ft) 0.14	846.20	Shear (1b/sq ft)	0.13	0.30
Alpha 0.00	1.72	Stream Power (1b/ft s)	245.00	0.00
Frctn Loss (ft) 0.42	0.07	Cum Volume (acre-ft)	0.21	1.60
C & E Loss (ft) 0.30	0.04	Cum SA (acres)	0.16	0.41

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

Page 28

existing.rep
This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	852.48	Element	Left OB	Channel
Right OB Vel Head (ft)	0.18	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.29	Reach Len. (ft)	90.00	48.00
15.00 Crit w.s. (ft)		Flow Area (sq ft)	105.36	233.45
234.04 E.G. Slope (ft/ft)	0.001034	Area (sq ft)	105.36	233.45
234.04 Q Total (cfs)	1512.00	Flow (cfs)	156.80	966.17
389.03 Top Width (ft)	179.05	Top width (ft)	46.80	44.00
88.25 Vel Total (ft/s)	2.64	Avg. Vel. (ft/s)	1.49	4.14
1.66 Max Chl Dpth (ft)	6.09	Hydr. Depth (ft)	2.25	5.31
2.65 Conv. Total (cfs)	47022.4	Conv. (cfs)	4876.2	30047.5
12098.7 Length Wtd. (ft)	43.98	wetted Per. (ft)	46.99	44.23
88.42 Min Ch El (ft)	846.20	Shear (lb/sq ft)	0.14	0.34
0.17 Alpha	1.71	Stream Power (lb/ft s)	245.00	0.00
0.00 Frctn Loss (ft)	0.08	Cum Volume (acre-ft)	0.28	1.73
0.52 C & E Loss (ft) 0.31	0.05	Cum SA (acres)	0.19	0.41

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	852.89	Element	Left OB	Channel
Right OB Vel Head (ft)	0.20	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.68	Reach Len. (ft)	90.00	48.00
15.00 Crit W.S. (ft)		Flow Area (sq ft)	124.37	250.64
268.93 E.G. Slope (ft/ft)	0.001069	Area (sq ft)	124.37	250.64
268.93 Q Total (cfs)	1796.00	Flow (cfs)	199.73	1105.81
490.46 Top Width (ft)	184.94	Top Width (ft)	50.51	44.00
90.44 Vel Total (ft/s)	2.79	Avg. Vel. (ft/s)	1.61	4.41
1.82		Page 29		

Max Chl Dpth (ft) 2.97	6.48	existing.rep Hydr. Depth (ft)	2.46	5.70
Conv. Total (cfs) 15001.9	54934.7	Conv. (cfs)	6109.1	33823.6
Length Wtd. (ft) 90.64	43.49	Wetted Per. (ft)	50.73	44.23
Min Ch El (ft) 0.20	846.20	Shear (1b/sq ft)	0.16	0.38
Alpha 0.00	1.69	Stream Power (lb/ft s)	245.00	0.00
Frctn Loss (ft) 0.60	0.08	Cum Volume (acre-ft)	0.34	1.86
C & E Loss (ft) 0.32	0.06	Cum SA (acres)	0.21	0.41

CROSS SECTION

RIVER: Bluestone Creek REACH: 1	RS: 700
INPUT Description: X-700	

Station El		ata	num=	14					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	853	15	857	20	857	33	850	35	849
39	847	53	846	66	846	72	850	85	850
110	850	160	852	183	856	195	860		
Manning! s	n Values		num-	2					

Manning's	n Values		num=	3	
Sta	n Val	Sta	n Val	Sta	n Val
0	.055	33	.035	72	.055

Bank Sta:	Left	Right	Lengths:	Left C	hannel	Right	Coeff Contr.	Expan.
	33	72	_	95	67	8	.1	. 3

CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	849.86	Element	Left OB	Channel
Right OB Vel Head (ft)	0.24	Wt. n-Val.		0.035
W.S. Elev (ft)	849.62	Reach Len. (ft)	95.00	67.00
8.00 Crit W.S. (ft)		flow Area (sq ft)		107.47
<pre>E.G. Slope (ft/ft)</pre>	0.002214	Area (sq ft)		107.47
Q Total (cfs)	419.00	Flow (cfs)		419.00
Top Width (ft)	37.67	Top Width (ft)		37.67
Vel Total (ft/s)	3.90	Avg. Vel. (ft/s)		3.90

Max Chl Dpth (ft)	3.62	existing.rep Hydr. Depth (ft)		2.85
Conv. Total (cfs)	8904.0	Conv. (cfs)		8904.0
Length Wtd. (ft)	66.98	Wetted Per. (ft)		39.42
Min Ch El (ft)	846.00	Shear (1b/sq ft)		0.38
Alpha	1.00	Stream Power (lb/ft s)	195.00	0.00
0.00 Frctn Loss (ft)	0.18	Cum Volume (acre-ft)	0.00	0.71
0.11 C & E Loss (ft) 0.07	0.01	Cum SA (acres)	0.01	0.33
CROSS SECTION OUTPUT	Profile #10 Ye	ear		
E.G. Elev (ft) Right OB	851.40	Element	Left OB	Channe1
Vel Head (ft) 0.055	0.43	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 8.00	850.97	Reach Len. (ft)	95.00	67.00
Crit W.S. (ft) 48.51		Flow Area (sq ft)	0.87	159.76
E.G. Slope (ft/ft) 48.51	0.002679	Area (sq ft)	0.87	159.76
Q Total (cfs) 57.45	928.00	Flow (cfs)	0.69	869.86
Top Width (ft) 62.21	103.00	Top Width (ft)	1.80	39.00
Vel Total (ft/s) 1.18	4.44	Avg. Vel. (ft/s)	0.79	5.44
Max Chl Dpth (ft) 0.78	4.97	Hydr. Depth (ft)	0.48	4.10
Conv. Total (cfs) 1110.1	17930.9	Conv. (cfs)	13.3	16807.5
Length Wtd. (ft) 62.22	61.94	Wetted Per. (ft)	2.04	40.95
Min Ch El (ft) 0.13	846.00	Shear (1b/sq ft)	0.07	0.65
Alpha	1.42	Stream Power (1b/ft s)	195.00	0.00
0.00 Frctn Loss (ft) 0.23	0.19	Cum Volume (acre-ft)	0.06	1.18
C & E Loss (ft) 0.18	0.01	Cum SA (acres)	0.08	0.36
CROSS SECTION OUTPUT	Profile #25 Ye	ar		
E.G. Elev (ft) Right OB	851.94	Element	Left OB	Channel
Vel Head (ft) 0.055	0.59	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 8.00	851.35	Reach Len. (ft)	95.00	67.00
Crit W.S. (ft)		Flow Area (sq ft) Page 31	1.70	174.76

	:	existing.rep		
74.29 E.G. Slope (ft/ft) 74.29	0.003342	Area (sq ft)	1.70	174.76
Q Total (cfs)	1249.00	Flow (cfs)	1.88	1128.48
118.65 Top Width (ft) 71.82	113.34	Top width (ft)	2.51	39.00
Vel Total (ft/s)	4.98	Avg. Vel. (ft/s)	1.11	6.46
1.60 Max Chl Dpth (ft) 1.03	5.35	нydr. Depth (ft)	0.68	4.48
Conv. Total (cfs)	21604.5	Conv. (cfs)	32.5	19519.7
Length Wtd. (ft)	58.29	wetted Per. (ft)	2.85	40.95
71.85 Min Ch El (ft) 0.22	846.00	Shear (1b/sq ft)	0.12	0.89
Alpha	1, 53	Stream Power (1b/ft s)	195.00	0.00
0.00 Frctn Loss (ft) 0.38	0.21	Cum Volume (acre-ft)	0.12	1.38
C & E Loss (ft)	0.01	Cum SA (acres)	0.12	0.37

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	852.35	Element	Left OB	Channel
Right OB Vel Head (ft)	0.69	Wt _a n-Val _e	0.055	0.035
0.055 W.S. Elev (ft)	851.66	Reach Len. (ft)	95.00	67.00
8.00 Crit W.S. (ft)		Flow Area (sq ft)	2.54	186.56
97.16 E.G. Slope (ft/ft)	0.003710	Area (sq ft)	2.54	186.56
97.16 Q Total (cfs)	1512.00	Flow (cfs)	3.39	1325.71
182.90 Top Width (ft)	121.46	Top Width (ft)	3.07	39.00
79.39 Vel Total (ft/s)	5.28	Avg. Vel. (ft/s)	1.33	7.11
1.88 Max Chl Dpth (ft)	5.66	Hydr. Depth (ft)	0.83	4.78
1.22 Conv. Total (cfs)	24823.8	Conv. (cfs)	55.7	21765.3
3002.8 Length Wtd. (ft)	55.90	Wetted Per. (ft)	3.49	40.95
79.42 Min Ch El (ft)	846.00	Shear (lb/sq ft)	0.17	1.06
0.28 Alpha	1.60	Stream Power (1b/ft s)	195.00	0.00
0.00 Frctn Loss (ft)	0.21	Cum Volume (acre-ft)	0.16	1.50
0.46 C & E Loss (ft) 0.28	0.04	Cum SA (acres)	0.14	0.37

CROSS SECTION OUTPUT Profile #100 Year

		existing.rep	•	
E.G. Elev (ft)	852.75	Element	Left OB	Channel
Right OB Vel Head (ft)	0.80	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 8.00	851.95	Reach Len. (ft)	95.00	67.00
Crit W.S. (ft) 121.70		Flow Area (sq ft)	3.53	198.08
E.G. Slope (ft/ft) 121.70	0.004040	Area (sq ft)	3.53	198.08
Q Total (cfs) 261.79	1796.00	Flow (cfs)	5.48	1528.73
Top Width (ft) 86.77	129.39	Top Width (ft)	3.62	39.00
Vel Total (ft/s)	5.55	Avg. Vel. (ft/s)	1.55	7.72
2.15 Max Chl Dpth (ft)	5.95	Hydr. Depth (ft)	0.98	5.08
1.40 Conv. Total (cfs) 4118.6	28255.6	Conv. (cfs)	86.3	24050.8
Length Wtd. (ft) 86.81	53.85	wetted Per. (ft)	4.11	40.95
Min Ch El (ft) 0.35	846.00	Shear (lb/sq ft)	0.22	1.22
0.33 Alpha 0.00	1.67	Stream Power (lb/ft s)	195.00	0.00
Frctn Loss (ft) 0.53	0.21	Cum Volume (acre-ft)	0.21	1.61
C & E Loss (ft) 0.29	0.07	Cum SA (acres)	0.16	0.37
CROSS SECTION				
RIVER: Bluestone Creek REACH: 1	RS: 600			
INPUT				

CK022	PECITOM	

KTAEK"	D I ues colle	Creek		
REACH:	1		RS:	ൈ

Descripti Station E Sta 0 64 190		n Data	num= Elev 857 847 862	12 Sta 36 81	Elev 856 849	Sta 45 92	Elev 852 850	Sta 54 144	Elev 846 850
Manning's Sta 0	n Valu n Val .055	es Sta 45	num= n Val .035	3 Sta 81	n Val .055				
Bank Sta:	Left 45	Right 81	Lengths:	Left Cl 63	nannel 43	Right 1	Coeff(Contr. .1	Expan.

CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	849.67	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.34	Wt. n-Val.		0.035

		existing.rep		
W.S. Elev (ft) 1.00	849.32	Reach Len. (ft)	63.00	43.00
Crit W.S. (ft) 0.57		Flow Area (sq ft)		88.96
E.G. Slope (ft/ft) 0.57	0.003345	Area (sq ft)		88.96
Q Total (cfs) 0.26	419.00	Flow (cfs)		418.74
Top Width (ft) 3.54	35.52	Top Width (ft)		31.98
vel Total (ft/s) 0.46	4.68	Avg. Vel. (ft/s)		4.71
Max Chl Dpth (ft) 0.16	4.32	Hydr. Depth (ft)		2.78
Conv. Total (cfs)	7244.9	Conv. (cfs)		7240.4
Length Wtd. (ft)	43.02	Wetted Per. (ft)		33.52
Min Ch El (ft) 0.03	845.00	Shear (1b/sq ft)		0,55
Alpha 0.00	1.01	Stream Power (lb/ft s)	210.00	0.00
Frctn Loss (ft) 0.11	0.19	Cum Volume (acre-ft)	0.00	0.56
C & E Loss (ft) 0.07	0.01	Cum SA (acres)	0.01	0.28

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft) Right OB	851.20	Element	Left OB	Channel
Vel Head (ft) 0.055	0.53	Wt. n-val.		0.035
W.S. Elev (ft) 1.00	850.66	Reach Len. (ft)	63.00	43.00
Crit W.S. (ft) 78.03	849.57	Flow Area (sq ft)		133.18
78.03 E.G. Slope (ft/ft) 78.03	0.003720	Area (sq ft)		133.18
Q Total (cfs) 102.07	928.00	Flow (cfs)		825.93
Top Width (ft) 110.10	144.10	Top Width (ft)		33.99
Vel Total (ft/s) 1.31	4.39	Avg. Vel. (ft/s)		6.20
Max_Chl Dpth (ft)	5.66	Hydr. Depth (ft)		3.92
0.71 Conv. Total (cfs)	15214.2	Conv. (cfs)		13540.9
1673.4 Length Wtd. (ft)	39.78	Wetted Per. (ft)		35.93
110.33 Min Ch El (ft)	845.00	Shear (1b/sq ft)		0.86
0.16 Alpha	1.78	Stream Power (lb/ft s)	210.00	0.00
0.00 Frctn Loss (ft)	0.16	Cum Volume (acre-ft)	0.06	0.95
0.22 C & E Loss (ft) 0.17	0.00	Cum SA (acres)	0.08	0.31

Page 34

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	851.73	Element	Left OB	Channel
Right OB Vel Head (ft)	0.56	wt. n-Val.		0.035
0.055 W.S. Elev (ft)	851.17	Reach Len. (ft)	63.00	43.00
1.00 Crit W.S. (ft)		Flow Area (sq ft)		150.69
134.34 E.G. Slope (ft/ft)	0.003722	Area (sq ft)		150.69
134.34 Q Total (cfs)	1249.00	Flow (cfs)		998.02
250.98 Top Width (ft)	145.71	Top Width (ft)		34.76
110.95 Vel Total (ft/s)	4.38	Avg. Vel. (ft/s)		6.62
1.87 Max Chl Dpth (ft)	6.17	Hydr. Depth (ft)		4.34
1.21 Conv. Total (cfs)	20473.7	Conv. (cfs)		16359.6
4114.1 Length Wtd. (ft)	35.98	Wetted Per. (ft)		36.85
111.32 Min Ch El (ft)	845.00	Shear (1b/sq ft)		0.95
0.28 Alpha	1.86	Stream Power (1b/ft s)	210.00	0.00
0.00 Frctn Loss (ft)	0.13	Cum Volume (acre-ft)	0.12	1.13
0.36 C & E Loss (ft) 0.25	0.02	Cum SA (acres)	0.12	0.31

E.G. Elev (ft)	852.11	Element	Left OB	Channel
Right OB Vel Head (ft)	0.56	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	851.54	Reach Len. (ft)	63.00	43.00
1.00 Crit W.S. (ft)		Flow Area (sq ft)		163.62
175.42 E.G. Slope (ft/ft)	0.003677	Area (sq ft)		163.62
175.42 Q Total (cfs)	1512.00	Flow (cfs)		1124.50
387.50 Top Width (ft)	146.88	Top Width (ft)		35.31
111.57 Vel Total (ft/s)	4.46	Avg. Vel. (ft/s)		6.87
2.21 Max Chl Dpth (ft)	6.54	Hydr. Depth (ft)		4.63
1.57 Conv. Total (cfs)	24933.3	Conv. (cfs)		18543.4
6390.0 Length Wtd. (ft)	33.79	Wetted Per. (ft)		37.52
112.04		Page 35		

Min Ch El (ft)	845.00	existing.rep Shear (lb/sq ft)	•	1.00
0.36 Alpha 0.00	1.83	Stream Power (lb/ft s)	210.00	0.00
Frctn Loss (ft)	0.11	Cum Volume (acre-ft)	0.16	1.23
0.43 C & E Loss (ft) 0.26	0.03	Cum SA (acres)	0.14	0.31

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	852.48	Element	Left OB	Channel
Right OB	Λ το			0.035
Vel Head (ft) 0.055	0.58	Wt. n-Val.	•	0.035
W.S. Elev (ft)	851.90	Reach Len. (ft)	63.00	43.00
1.00		• •		
Crit W.S. (ft)		Flow Area (sq ft)		176.31
215.32	0.003652	Aron (sa ft)		176.31
E.G. Slope (ft/ft) 215.32	0.003632	Area (sq ft)		1/0.31
Q Total (cfs)	1796.00	Flow (cfs)		1254.85
541.15				
Top Width (ft)	148.01	Top width (ft)	• •	35.85
112.16	4.50			
Vel Total (ft/s)	4.59	Avg. Vel. (ft/s)		7.12
2.51 Max Chl Dpth (ft)	6.90	Hydr. Depth (ft)		4.92
1.92	0.50	nyur. Depen (12)		7.52
Conv. Total (cfs)	29720.1	Conv. (cfs)		20765.2
8954.9				
Length Wtd. (ft)	32.05	Wetted Per. (ft)		38.16
112.73	045 00	chan (1h/an ft)		1 05
Min Ch El (ft) 0.44	845.00	Shear (lb/sq ft)		1.05
Alpha	1.77	Stream Power (1b/ft s)	210.00	0.00
0.00		5 t. tu 5 t. t. (15) . t 5)		0.00
Frctn Loss (ft)	0.10	Cum Volume (acre-ft)	0.21	1.32
0.50				
C_&_E_Loss (ft)	0.03	Cum SA (acres)	0.15	0.31
0.27			•	

CROSS SECTION

RIVER: Bluestone Creek REACH: 1 RS: 500

INPUT

Description: X-500

Sta	tion E	levation	Data	num=	12					
	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
	0	856	50	850	70	848.5	80	846.77	95	845.64
	100	846.5	106	849.5	163	850	185	850.45	215	850
	223	852	240	862						

Manning's n Values Sta n Val num= Sta n Val Sta n Val Page 36

existing.rep 106 .055

0 .055	70 .035	existing.rep 106 .055	**	
Bank Sta: Left Righ 70 10		Left Channel Right 85 68 5	Coeff Contr.	Expan.
CROSS SECTION OUTPUT	Profile #2 Ye	ear		
E.G. Elev (ft) Right OB	849.47	Element	Left OB	Channel
Vel Head (ft)	0.46	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 5.00	849.01	Reach Len. (ft)	85.00	68.00
Crit W.S. (ft)		Flow Area (sq ft)	1.74	76.84
E.G. Slope (ft/ft)	0.005935	Area (sq ft)	1.74	76.84
Q Total (cfs)	419.00	Flow (cfs)	1.45	417.55
Top Width (ft)	41.83	Top width (ft)	6.81	35.02
Vel Total (ft/s)	5.33	Avg. Vel. (ft/s)	0.84	5.43
Max Chl Dpth (ft)	3.37	Hydr. Depth (ft)	0.26	2.19
Conv. Total (cfs)	5438.9	Conv. (cfs)	18.8	5420.0
Length Wtd. (ft)	68.03	Wetted Per. (ft)	6.82	35.88
Min Ch El (ft)	845.64	Shear (lb/sq ft)	0.09	0.79
Alpha	1.03	Stream Power (1b/ft s)	240.00	0.00
0.00 Frctn Loss (ft)	0.47	Cum Volume (acre-ft)	0.00	0.48
0.11 C & E Loss (ft) 0.07	0.01	Cum SA (acres)	0.01	0.24
CROSS SECTION OUTPUT	Profile #10 Y	'ear		
E.G. Elev (ft)	851.04	Element	Left OB	Channel
Right OB Vel Head (ft)	0.55	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	850.49	Reach Len. (ft)	85.00	68.00
5.00 Crit W.S. (ft)	849.78	Flow Area (sq ft)	25.79	129.85
56.40 E.G. Slope (ft/ft)	0.004133	Area (sq ft)	25.79	129.85
56.40 Q Total (cfs)	928.00	Flow (cfs)	46.78	818.85
62.37 Top Width (ft)	171.04	Top Width (ft)	24.08	36.00
110.96 Vel Total (ft/s)	4.38	Avg. Vel. (ft/s)	1.81	6.31
1.11 Max Chl Dpth (ft)	4.85	Hydr. Depth (ft)	1.07	3.61
0.51 Conv. Total (cfs)	14435.8	Conv. (cfs) Page 37	727.8	12737.8

970.2 Length Wtd. (ft) 111.03	64.91	Wetted Per. (ft)	24.17	36.97
Min Ch El (ft) 0.13	845.64	Shear (1b/sq ft)	0.28	0.91
Alpha 0.00	1.85	Stream Power (1b/ft s)	240.00	0.00
Frctn Loss (ft) 0.22	0.38	Cum Volume (acre-ft)	0.04	0.82
C & E Loss (ft)	0.05	Cum SA (acres)	0.06	0.27

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	851.58	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.49	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 5.00	851.09	Reach Len. (ft)	85.00	68.00
Crit W.S. (ft) 123.68	850.64	Flow Area (sq ft)	41.74	151.45
E.G. Slope (ft/ft) 123.68	0.003397	Area (sq ft)	41.74	151.45
Q Total (cfs) 206.23	1249.00	Flow (cfs)	83.39	959.38
Top Width (ft) 113.36	178.44	Top Width (ft)	29.08	36.00
Vel Total (ft/s) 1.67	3.94	Avg. Vel. (ft/s)	2.00	6.33
Max Chl Dpth (ft) 1.09	5.45	Hydr. Depth (ft)	1.44	4.21
Conv. Total (cfs)	21429.9	Conv. (cfs)	1430.8	16460.6
Length Wtd. (ft) 113.50	59.76	Wetted Per. (ft)	29.20	36.97
Min Ch El (ft) 0.23	845.64	Shear (1b/sq ft)	0.30	0.87
Alpha 0.00	2.03	Stream Power (lb/ft s)	240.00	0.00
Frctn Loss (ft) 0.35	0.30	Cum Volume (acre-ft)	0.09	0.98
C & E Loss (ft) 0.25	0.06	Cum SA (acres)	0.09	0.27

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

	•	existing.rep		
E.G. Elev (ft)	851.96	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.47	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 5.00	851.49	Reach Len. (ft)	85.00	68.00
Crit W.S. (ft) 169.53	850.91	Flow Area (sq ft)	54.09	165.90
E.G. Slope (ft/ft) 169.53	0.003104	Area (sq ft)	54.09	165.90
Q Total (cfs) 330.22	1512.00	Flow (cfs)	114.16	1067.61
Top width (ft) 114.96	183.39	Top Width (ft)	32.43	36.00
Vel Total (ft/s)	3.88	Avg. Vel. (ft/s)	2.11	6.44
1.95 Max Chl Dpth (ft) 1.47	5.85	Hydr. Depth (ft)	1.67	4.61
Conv. Total (cfs)	27137.6	Conv. (cfs)	2049.0	19161.7
5926.9 Length Wtd. (ft)	56.72	Wetted Per. (ft)	32.57	36.97
115.16 Min Ch El (ft)	845.64	Shear (lb/sq ft)	0.32	0.87
0.29 Alpha	2.02	Stream Power (lb/ft s)	240.00	0.00
0.00 Frctn Loss (ft)	0.27	Cum Volume (acre-ft)	0.12	1.07
0.43 C & E Loss (ft) 0.26	0.06	Cum SA (acres)	0.11	0.28
V.4U				

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

E.G. Elev (ft)	852.34	Element	Left OB	Channel
Right OB		3		
Vel Head (ft)	0.47	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 5.00	851.87	Reach Len. (ft)	85.00	68.00
Crit W.S. (ft) 213.39		Flow Area (sq ft)	66.98	179.55
E.G. Slope (ft/ft)	0.002921	Area (sq ft)	66.98	179.55
213.39		•		
Q_Total (cfs)	1796.00	Flow (cfs)	148.62	1181.49
465.89	400.07	1.1	25 50	26.00
Top Width (ft)	188.07	Top Width (ft)	35.58	36.00
116.48	2.01		2 22	C 50
Vel Total (ft/s)	3.91	Avg. Vel. (ft/s)	2.22	6.58
2.18 Max Chl Dpth (ft) 1.83	6.23	Hydr. Depth (ft)	1.88	4.99
Conv. Total (cfs)	33229.9	Conv. (cfs)	2749.8	21860.2
8619.9 Length Wtd. (ft)	54.36	Wetted Per. (ft) Page 39	35.75	36.97

116.72 Min Ch El (ft)	845.64	Shear (1b/sq ft)	0.34	0.89
0.33 Alpha	1.98	Stream Power (lb/ft s)	240.00	0.00
0.00 Frctn Loss (ft)	0.25	Cum Volume (acre-ft)	0.16	1.15
0.50 C & E Loss (ft)	0.07	Cum SA (acres)	0.13	0.28

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION

Conv. Total (cfs)

CROSS SECTION				
RIVER: Bluestone Cree REACH: 1	ek RS: 400	V.		
INPUT Description: X-400 Station Elevation Date Sta Elev 0 875 48 846 108 849 190 860	ta num= Sta Elev 7 859 55 845.52 141 851	16 Sta Elev Sta 22 851 36 67 846 72 168 849 170	Elev Sta 851 42 849 83 850 175	Elev 847 849 852
Manning's n Values Sta n Val 0 .055	num≔ Sta n Val 36 .035	3 Sta n Val 72 .055		
Bank Sta: Left Righ	nt Lengths: 1 72	Left Channel Right 125 105 45	Coeff Contr. .1	Expan. .3
CROSS SECTION OUTPUT	Profile #2 Yea	ır		
E.G. Elev (ft)	848.99	Element	Left OB	Channel
Right OB Vel Head (ft)	0.60	Wt. n-Val.		0.035
W.S. Elev (ft) 45.00	848.39	Reach Len. (ft)	125.00	105.00
Crit W.S. (ft)		Flow Area (sq ft)		67.38
E.G. Slope (ft/ft)	0.008031	Area (sq ft)		67.38
Q Total (cfs)	419.00	Flow (cfs)		419.00
Top Width (ft)	31.05	Top Width (ft)		31.05
Vel Total (ft/s)	6.22	Avg. Vel. (ft/s)		6.22
• • •	0.22	,g (, s)		
Max Chl Dpth (ft)	2.87	Hydr. Depth (ft)		2.17

Conv. (cfs)

Page 40

4675.5

4675.5

Length Wtd. (ft)	105.00	existing.rep Wetted Per. (ft)		32.24
Min Ch El (ft)	845.52	Shear (lb/sq ft)		1.05
Alpha 0.00	1.00	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft) 0.11	1.13	Cum Volume (acre-ft)		0.36
C & E Loss (ft) 0.07	0.04	Cum SA (acres)		0.19

warning: The energy loss was greater than $1.0~{\rm ft}~(0.3~{\rm m})$. between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	850.61	Element	Left OB	Channel
Right OB Vel Head (ft)	1.03	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	849.58	Reach Len. (ft)	125.00	105.00
45.00 Crit W.S. (ft)	849.58	Flow Area (sq ft)		106.31
26.03 E.G. Slope (ft/ft)	0.008968	Area (sq ft)		106.31
26.03 Q Total (cfs)	928.00	Flow (cfs)		886.58
41.42 Top Width (ft)	88.29	Top width (ft)		33.86
54.42 Vel_Total (ft/s)	7.01	Avg. Vel. (ft/s)		8.34
1.59 Max Chl Dpth (ft)	4.06	Hydr. Depth (ft)		3.14
0.48 Conv. Total (cfs)	9799.5	Conv. (cfs)		9362.1
437.4 Length Wtd. (ft)	102.85	Wetted Per. (ft)		35.58
54.60 Min Ch El (ft)	845.52	Shear (lb/sq ft)		1.67
0.27 Alpha	1.35	Stream Power (lb/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.91	Cum Volume (acre-ft)	0.02	0.64
0.21 C & E Loss (ft) 0.15	0.01	Cum SA (acres)	0.04	0.22
A.T.)				

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	851.22	Element	Left OB	Channel
Right OB Vel Head (ft)	1.06	wt. n-val.		0.035
0.055 W.S. Elev (ft) 45.00	850.16	Reach Len. (ft)	125.00	105.00
Crit W.S. (ft) 63.43	850.16	Flow Area (sq ft)		126.41
E.G. Slope (ft/ft) 63.43	0.008144	Area (sq ft)		126.41
Q Total (cfs) 143.14	1249.00	Flow (cfs)		1105.86
Top Width (ft) 73.26	108.00	Top Width (ft)		34.74
vel Total (ft/s) 2.26	6.58	Avg. Vel. (ft/s)		8.75
Max Chl Dpth (ft) 0.87	4.64	Hydr. Depth (ft)		3.64
Conv. Total (cfs) 1586.1	13840.2	Conv. (cfs)		12254.1
Length Wtd. (ft) 73.61	98.42	Wetted Per. (ft)		36.64
Min Ch El (ft) 0.44	845.52	Shear (lb/sq ft)		1.75
Alpha	1.58	Stream Power (lb/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.70	Cum Volume (acre-ft)	0.05	0.76
0.34 C & E Loss (ft) 0.24	0.03	Cum SA (acres)	0.07	0.22

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

E.G. Elev (ft)	851.63	Element	Left OB	Channel
Right OB Vel Head (ft)	1.10	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	850.54	Reach Len. (ft)	125.00	105.00
45.00 Crit W.S. (ft)	850.54	Flow Area (sq ft)		139.58
93.27 E.G. Slope (ft/ft)	0.007912	Area (sq ft)		139.58
93.27 Q Total (cfs)	1512.00	Flow (cfs)		1270.14
241.86 Top Width (ft)	120.79	Top Width (ft)		35.31
85.48		Page 42		

W-7 7 (5: /->)	°C 40	existing rep		0.40
Vel Total (ft/s) 2.59	6.49	Avg. Vel. (ft/s)		9.10
Max Chl Dpth (ft) 1.09	5.02	Hydr. Depth (ft)		3.95
Conv. Total (cfs) 2719.1	16998.2	Conv. (cfs)		14279.1
Length wtd. (ft) 85.92	95.71	Wetted Per. (ft)		37.32
Min Ch El (ft) 0.54	845.52	Shear (lb/sq ft)		1.85
Alpha 0.00	1.68	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft) 0.41	0.67	Cum Volume (acre-ft)	0.07	0.83
C & E Loss (ft) 0.25	0.03	Cum SA (acres)	0.08	0.22

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

E.G. Elev (ft)	852.02	Element	Left OB	Channel
Right OB Vel Head (ft)	1.17	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	850.85	Reach Len. (ft)	125.00	105.00
45.00 Crit w.s. (ft)	850.85	Flow Area (sq ft)		150.61
121.36 E.G. Slope (ft/ft)	0.008098	Area (sq ft)		150.61
121.36 Q Total (cfs)	1796.00	Flow (cfs)		1444.17
351.83 Top Width (ft)	131.34	Top Width (ft)		35.77
95.56 Vel Total (ft/s)	6.60	Avg. Vel. (ft/s)		9.59
2.90 Max Chl Dpth (ft)	5.33	Hydr. Depth (ft)		4.21
1.27 Conv. Total (cfs)	19958.3	Conv. (cfs)		16048.5
3909.8 Length Wtd. (ft)	93.76	Wetted Per. (ft)		37.88
96.09 Min Ch El (ft)	845.52	Shear (lb/sq ft)		2.01
0.64 Alpha	1.73	Stream Power (lb/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.70	Cum Volume (acre-ft)	0.09	0.89
0.48 C & E Loss (ft)	0.02	Cum SA (acres)	0.09	0.22
0.26	0.02	Cum SA (acres)	0.09	0.22

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program

valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION

Min Ch El (ft)

Alpha

0.00

CROSS SECTION			·				
RIVER: Bluestone Creek REACH: 1	RS: 300						
INPUT Description: X-300 Station Elevation Data Sta Elev Sta 0 885 7 33 848 37 84 848 88 162 853 180	num= Elev 878 845 849 860	17 Sta ! 9 49 112	Elev 849 844 848	Sta 21 57 126	Elev 850 845 849	Sta 26 64 152	Elev 848 848 849
Manning's n Values Sta n Val Sta 0 .055 33	num= n Val .035		Va1 055				
Bank Sta: Left Right 33 64	Lengths: L	eft Chanr 125	el Ri 98	ght 20	Coeff C	ontr. .1	Expan.
CROSS SECTION OUTPUT Pro	file #2 Yea	r					
E.G. Elev (ft) Right OB	847.81	Element	:		Lef	t OB	Channel
Vel Head (ft)	1.00	Wt. n-\	al.				0.035
W.S. Elev (ft)	846.81	Reach l	.en. (ft)	125	.00	98.00
W.S. Elev (ft) 20.00 Crit W.S. (ft)	846.81 846.81		en. (ft ea (sq		125	.00	98.00 52.28
20.00			ea (sq		125	.00	
20.00 Crit W.S. (ft)	846.81	Flow Ar	ea (sq		125	.00	52.28
20.00 Crit W.S. (ft) E.G. Slope (ft/ft)	846.81 0.015301	Flow Ar Area (s Flow (d	ea (sq		125	.00	52.28 52.28
<pre>20.00 Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs)</pre>	846.81 0.015301 419.00	Flow Area (s Flow (c Top Wic	ea (sq sq ft) sfs)	ft)	125	.00	52.28 52.28 419.00
<pre>20.00 Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft)</pre>	846.81 0.015301 419.00 26.65	Flow Area (s Flow (c Top Wic Avg. Ve	ea (sq q ft) fs) th (ft)	ft) s)	125	.00	52.28 52.28 419.00 26.65
20.00 Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s)	846.81 0.015301 419.00 26.65 8.01	Flow Area (s Flow (c Top Wic Avg. Ve	ea (sq q ft) fs) th (ft) el. (ft/	ft) s)	125	.00	52.28 52.28 419.00 26.65 8.01
20.00 Crit W.S. (ft) E.G. Slope (ft/ft) Q Total (cfs) Top Width (ft) Vel Total (ft/s) Max Chl Dpth (ft)	846.81 0.015301 419.00 26.65 8.01 2.81	Flow Area (s Flow (c Top Wic Avg. Ve Hydr. C	ea (sq q ft) fs) th (ft) el. (ft/	ft) s) t)	125	.00	52.28 52.28 419.00 26.65 8.01 1.96

Page 44

844.00

1.00

Shear (1b/sq ft)

Stream Power (1b/ft s)

1.80

0.00

180.00

Fretn Loss (ft)	0.66	existing.rep Cum Volume (acre-ft)		0.22
C & E Loss (ft) 0.07	0.23	Cum SA (acres)	·	0.12

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	849.67	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	1.10	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 20.00	848.58	Reach Len. (ft)	125.00	98.00
Crit W.S. (ft)	848.58	Flow Area (sq ft)	4.46	104.41
18.57 E.G. Slope (ft/ft) 18.57	0.008644	Area (sq ft)	4.46	104.41
Q Total (cfs)	928.00	Flow (cfs)	7.26	893.27
27.47 Top Width (ft)	83.71	Top Width (ft)	8.44	31.00
44.27 Vel Total (ft/s)	7.28	Avg. Vel. (ft/s)	1.63	8.56
1.48 Max Chl Dpth (ft) 0.42	4.58	Hydr. Depth (ft)	0.53	3.37
Conv. Total (cfs)	9981.4	Conv. (cfs)	78.1	9607.9
295.4 Length Wtd. (ft) 44.37	81.24	Wetted Per. (ft)	8.56	32.72
Min Ch El (ft)	844.00	Shear (1b/sq ft)	0.28	1.72
0.23 Alpha	1.33	Stream Power (lb/ft s)	180.00	0.00
0.00 Frctn Loss (ft)	0.55	Cum Volume (acre-ft)	0.01	0.38
0.19 C & E Loss (ft) 0.10	0.20	Cum SA (acres)	0.03	0.14

warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth
for the water surface and continued on with the calculations. Page 45

Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the

need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	850.32	Element	Left OB	Channel
Right OB Vel Head (ft)	0.95	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 20.00	849.38	Reach Len. (ft)	125.00	98.00
Crit W.S. (ft) 74.25	849.38	Flow Area (sq ft)	12.85	129.15
F.G. Slope (ft/ft) 74.25	0.006228	Area (sq ft)	12.85	129.15
Q Total (cfs) 140.10	1249.00	Flow (cfs)	28.16	1080.74
Top Width (ft) 88.94	134.92	Top Width (ft)	14.98	31.00
Vel Total (ft/s)	5.78	Avg. Vel. (ft/s)	2.19	8.37
Max Chl Dpth (ft)	5.38	Hydr. Depth (ft)	0.86	4.17
0.83 Conv. Total (cfs) 1775.3	15826.9	Conv. (cfs)	356.9	13694.8
Length Wtd. (ft)	78.24	Wetted Per. (ft)	15.61	32.72
89.19 Min Ch El (ft)	844.00	Shear (1b/sq ft)	0.32	1.53
0.32 Alpha	1.83	Stream Power (lb/ft s)	180.00	0.00
0.00 Frctn Loss (ft)	0.53	Cum Volume (acre-ft)	0.03	0.46
0.27 C & E Loss (ft) 0.15	0.10	Cum SA (acres)	0.04	0.14

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than $1.0 \, \text{ft} \, (0.3 \, \text{m})$. between the current and previous cross section. This may indicate the

need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

E.G. Elev (ft)	850.70	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	1.00	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 20.00	849.70	Reach Len. (ft)	125.00	98.00
Crit W.S. (ft) 102.88	849.70	Flow Area (sq ft)	18.40	139.09
E.G. Slope (ft/ft) 102.88	0.006282	Area (sq ft)	18.40	139.09
Q Total (cfs) 240.74	1512.00	Flow (cfs)	43.16	1228.10
Top Width (ft) 89.74	140.38	Top Width (ft)	19.64	31.00
Vel Total (ft/s) 2.34	5.81	Avg. Vel. (ft/s)	2.35	8.83
Max Chl Dpth (ft)	5.70	нydr. Depth (ft)	0.94	4.49
Conv. Total (cfs) 3037.5	19076.9	Conv. (cfs)	544.5	15494.9
Length Wtd. (ft) 90.05	76.59	Wetted Per. (ft)	20.65	32.72
Min Ch El (ft) 0.45	844.00	Shear (lb/sq ft)	0.35	1.67
Alpha 0.00	1.91	Stream Power (lb/ft s)	180.00	0.00
Frctn Loss (ft) 0.31	0.55	Cum Volume (acre-ft)	0.04	0.49
C & E Loss (ft) 0.16	0.07	Cum SA (acres)	0.05	0.14

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program

valid subcritical answer. The program defaulted to critical depth.

E.G. Elev (ft)	851.05	Element	Left OB	Channel
Right OB Vel Head (ft)	1.12	Wt. n-val.	0.055	0.035
0.055 W.S. Elev (ft)	849.93	Reach Len. (ft)	125.00	98.00
20.00 Crit W.S. (ft)	849.93	Flow Area (sq ft)	23.39	146.34
123.95 E.G. Slope (ft/ft)	0.006844	Area (sq ft)	23.39	146.34
123.95 Q Total (cfs)	1796.00	Flow (cfs)	59.62	1395.20
341.18 Top Width (ft)	144.38	Top Width (ft) Page 47	23.05	31.00

90.33	*! 1		•	
vel Total (ft/s) 2.75	6.12	Avg. Vel. (ft/s)	2.55	9.53
Max Chl Dpth (ft)	5.93	нydr. Depth (ft)	1.01	4.72
Conv. Total (cfs)	21710.1	Conv. (cfs)	720.7	16865.1
4124.2 Length Wtd. (ft)	75.20	Wetted Per. (ft)	24.33	32.72
Min Ch El (ft)	844.00	Shear (lb/sq ft)	0.41	1.91
Alpha	1.93	Stream Power (1b/ft s)	180.00	0.00
Frctn Loss (ft)	0.57	Cum Volume (acre-ft)	0.06	0.53
C & E Loss (ft)	0.07	Cum SA (acres)	0.06	0.14
0.58 Alpha 0.00 Frctn Loss (ft) 0.35	1.93 0.57	Stream Power (lb/ft s) Cum Volume (acre-ft)	180.00	(

warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the

need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water
surface came back below critical depth. This indicates that there is not a
valid subcritical answer. The program
defaulted to critical depth.

CROSS SECTION

RIVER: Bluestone Creek

RS: 200 REACH: 1

INPUT Descriptio Station El Sta 0 44 84	n: X-200 evation D Elev 873 843 847	ata Sta 8 50 93	num= Elev 857 845 845	18 Sta 23 62 109	Elev 848 847 844	Sta 31 68 117	Elev 847 848 844	Sta 35 81 123	Elev 844 847 848
141 Manning's Sta	850	156 Sta 31	852 num= n Val .035	172 3 Sta 62	860 n Val .055				
Bank Sta:	Left Ri 31	ght 62	Lengths:	Left Ch		Right 75	Coeff	Contr. .1	Expan.
E.G. Ele		T Pro	file #2 Y€ 846.77	ear Elem	nent		Lei	ft OB	Channe

E.G. Elev (ft)	846.77	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.24	Wt. n-Val.		0.035
W.S. Elev (ft)	846.53	Reach Len. (ft) Page 48	115.00	105.00

	existing.rep		
845.76	Flow Area (sq ft)		53.69
0.005017	Amon (on ft)	•	F2 60
0.003017	Area (Sq FC)		53.69
419.00	Flow (cfs)		244.03
.23.00			217103
62.21	Top Width (ft)		27.54
3.60	Avg. Vel. (ft/s)		4.55
2 52	made (fa)		1 05
3.55	Hyar. Depth (Tt)		1.95
5015 6	Conv (cfs)		3445.3
3313.0	Conv. (Crs)		3443.3
91.70	Wetted Per. (ft)		28.89
843.00	Shear (lb/sq ft)		0.58
1.18	Stream Power (1b/ft s)	172.00	0.00
0.00	Cum Valuma (agua fa)		0.10
0.65	cum volume (acre-rt)		0.10
0 04	Cum SA (acres)		0.06
0.04	cam on (acres)		0.00
	3.60 3.53 5915.6 91.70	0.005017 Area (sq ft) 419.00 Flow (cfs) 62.21 Top Width (ft) 3.60 Avg. Vel. (ft/s) 3.53 Hydr. Depth (ft) 5915.6 Conv. (cfs) 91.70 Wetted Per. (ft) 843.00 Shear (lb/sq ft) 1.18 Stream Power (lb/ft s) 0.85 Cum Volume (acre-ft)	845.76 Flow Area (sq ft) 0.005017 Area (sq ft) 419.00 Flow (cfs) 62.21 Top Width (ft) 3.60 Avg. Vel. (ft/s) 3.53 Hydr. Depth (ft) 5915.6 Conv. (cfs) 91.70 Wetted Per. (ft) 843.00 Shear (lb/sq ft) 1.18 Stream Power (lb/ft s) 172.00 0.85 Cum Volume (acre-ft)

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance)
is less than 0.7 or greater than 1.4.
This may indicate the need for additional cross sections.

E.G. Elev (ft)	848.14	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.41	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 75.00	847.72	Reach Len. (ft)	115.00	105.00
Crit W.S. (ft) 114.30	846.73	Flow Area (sq ft)	2.08	89.86
E.G. Slope (ft/ft) 114.30	0.005393	Area (sq ft)	2.08	89.86
Q Total (cfs) 374.50	928.00	Flow (cfs)	2.08	551.42
Top Width (ft)	92.06	Top Width (ft)	5.77	31.00
55.29 Vel Total (ft/s)	4.50	Avg. Vel. (ft/s)	1.00	6.14
3.28 Max Chl Dpth (ft)	4.72	Hydr. Depth (ft)	0.36	2.90
2.07 Conv. Total (cfs)	12637.1	Conv. (cfs)	28.4	7509.0
5099.7 Length Wtd. (ft)	91.64	Wetted Per. (ft)	5.82	32.55
56.75 Min Ch El (ft)	843.00	Shear (1b/sq ft)	0.12	0.93
0.68 Alpha	1.32	Stream Power (lb/ft s)	172.00	0.00
0.00 Frctn Loss (ft)	0.96	Cum Volume (acre-ft) Page 49	0.00	0.16

0.16 C & E Loss (ft) 0.07 Cum SA (acres) 0.01 0.07 0.08

Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	848.59	Element	Left OB	Channel
Right OB		_		
Vel Head (ft)	0.63	Wt. n-Val.	0.055	0.035
0.055				
W.S. Elev (ft)	847.96	Reach Len. (ft)	115.00	105.00
75.00				
Crit W.S. (ft)	847.10	Flow Area (sq ft)	3.72	97.38
128.31				
E.G. Slope (ft/ft)	0.007417	Area (sq ft)	3.72	97.38
128.31		, , ,		
Q Total (cfs)	1249.00	Flow (cfs)	5.29	739.33
504.39				
Top Width (ft)	98.97	Top Width (ft)	7.71	31.00
60.26	50.5.	rop wrach (re)		32.00
Vel Total (ft/s)	5.44	Avg. Vel. (ft/s)	1.42	7.59
3.93	3.44	Avg. vei. (11/3)	1.72	1.55
Max Chl Dpth (ft)	4.96	Hydr. Depth (ft)	0.48	3.14
Max Cill Optil (11)	4.90	Hyur. Depth (11)	0.46	3.14
2.13	14502 5	c (-f-)	C1 4	0004 0
Conv. Total (cfs)	14502.5	Conv. (cfs)	61.4	8584.5
5856.5		45.5		
Length Wtd. (ft)	91.76	Wetted Per. (ft)	7.77	32.55
61.83				
Min Ch El (ft)	843.00	Shear (lb/sq ft)	0.22	1.39
0.96		• •		
Alpha	1.36	Stream Power (lb/ft s)	172.00	0.00
0.00				
Frctn Loss (ft)	0.92	Cum Volume (acre-ft)	0.01	0.20
0.22	0.32	cam vorame (acre re)	0.02	0.20
C & E Loss (ft)	0.02	Cum SA (acres)	0.01	0.07
	0.02	Cum 3A (acres)	0.01	0.07
0.12				

Warning: Divided flow computed for this cross-section.

E.G. Elev (ft)	849.00	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.76	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 75.00	848.24	Reach Len. (ft)	115.00	105.00
73.00		Page 50		

	_ :	existing.rep		
Crit W.S. (ft)	847.51	Flow Area (sq ft)	5.93	105.79
145.10 E.G. Slope (ft/ft)	0.008200	Area (sq ft)	5.93	105.79
145.10	0.000200	,,, ea (54) c)	3.33	103.75
Q Total (cfs)	1512.00	Flow (cfs)	11.39	892.49
608.12 Top width (ft)	102.51	Top Width (ft)	8.39	31.00
63.12		· · · · · · · · · · · · · · · · · · ·	0.55	32.00
Vel Total (ft/s) 4.19	5.89	Avg. Vel. (ft/s)	1.92	8.44
Max Chl Dpth (ft)	5.24	Hydr. Depth (ft)	0.71	3.41
2.30		• •		
Conv. Total (cfs) 6715.7	16697.5	Conv. (cfs)	125.8	9856.0
Length Wtd. (ft)	91.54	Wetted Per. (ft)	8.52	32.55
64.71		30		
Min Ch El (ft)	843.00	Shear (lb/sq ft)	0.36	1.66
1.15	1 42	Street Bayer (1h/ft a)	172 00	0.00
Alpha 0.00	1.42	Stream Power (lb/ft s)	172.00	0.00
Frctn Loss (ft)	0.98	Cum Volume (acre-ft)	0.01	0.22
0.26	0.50	cam vorame (acre re)	0.02	
C & E Loss (ft)	0.02	Cum SA (acres)	0.01	0.07
0.12				

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

E.G. Elev (ft)	849.39	Element	Left OB	Channel
Right OB	0.97	um m val	0.055	0.035
Vel Head (ft) 0.055	0.87	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	848.51	Reach Len. (ft)	115.00	105.00
75.00 Crit W.S. (ft)	847.83	Flow Aron (sa ft)	8.32	114.38
162.93	047.03	Flow Area (sq ft)	0.32	114.30
<pre>E.G. Slope (ft/ft)</pre>	0.008588	Area (sq ft)	8.32	114.38
162.93	1706 00	53em (efe)	10 67	1040 27
Q Total (cfs) 736.06	1796.00	Flow (cfs)	19.67	1040.27
Top Width (ft)	105.46	Top Width (ft)	8.85	31.00
65.61	6.29	Ava Val (ft/a)	2 27	0.00
Vel Total (ft/s) 4.52	0.29	Avg. Vel. (ft/s)	2.37	9.09
Max Chl Dpth (ft)	5.51	Hydr. Depth (ft)	0.94	3.69
2.48	10370 0	Carrier (a Carr	242.2	44335 0
Conv. Total (cfs) 7942.5	19379.8	Conv. (cfs)	212.3	11225.0
Length Wtd. (ft)	91.24	Wetted Per. (ft)	9.06	32.55
67.22	042.00	shaan (1h/an fa)	0.40	1 00
Min Ch El (ft) 1.30	843.00	Shear (lb/sq ft)	0.49	1.88
Alpha	1.42	Stream Power (lb/ft s)	172.00	0.00
0.00	1 00	C 142] (54)	0.01	0.24
Frctn Loss (ft) 0.29	1.02	Cum Volume (acre-ft)	0.01	0.24
C & E Loss (ft)	0.02	Cum SA (acres) Page 51	0.01	0.07

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

CROSS SECTION

RIVER: Bluestone Creek REACH: 1	RS: 100			
INPUT Description: X-100 Station Elevation Data Sta Elev Sta 0 861 23 50 846 72 126 844 136	num= Elev 846 846 851	15 Sta Elev Sta 26 845 38 90 846 94 141 852 160	Elev Sta 843 45 844 116 856 172	Elev 844 844 860
Manning's n Values Sta n Val Sta 0 .055 23	num= n Val .035	3 Sta n Val 50 .055		
Bank Sta: Left Right 23 50	Lengths: L	eft Channel Right 0 0 0	Coeff Contr. .1	Expan. .3
CROSS SECTION OUTPUT Pro	file #2 Yea	r		
E.G. Elev (ft)	845.88	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.60	Wt. n-Val.		0.035
W.S. Elev (ft)	845.28	Reach Len. (ft)		
Crit W.S. (ft) 43.65	845.28	Flow Area (sq ft)		29.91
E.G. Slope (ft/ft) 43.65	0.022329	Area (sq ft)		29.91
Q Total (cfs) 196.46	419.00	Flow (cfs)		222.54
Top Width (ft) 36.38	59.40	Top Width (ft)		23.02
<pre>Vel Total (ft/s)</pre>	5.70	Avg. Vel. (ft/s)		7.44
4.50 Max Chl Dpth (ft)	2.28	Hydr. Depth (ft)		1.30
1.20 Conv. Total (cfs)	2804.0	Conv. (cfs)		1489.3
1314.7 Length Wtd. (ft)		Wetted Per. (ft)		23.55
37.08 Min Ch El (ft)	843.00	Shear (lb/sq ft)		1.77
1.64 Alpha	1.20	Stream Power (lb/ft s	172.00	0.00
0.00 Frctn Loss (ft)		Cum Volume (acre-ft)		
C & E Loss (ft)		Cum SA (acres)		

existing.rep

Warning: Divided flow computed for this cross-section.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft) Right OB	847.10	Element	Left OB	Channel
Vel Head (ft)	1.15	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	845.95	Reach Len. (ft)		
Crit W.S. (ft) 69.01	845.95	Flow Area (sq ft)		46.72
E.G. Slope (ft/ft) 69.01	0.028303	Area (sq ft)		46.72
Q Total (cfs) 452.94	928.00	Flow (cfs)		475.06
Top width (ft) 38.69	65.43	Top width (ft)		26.74
Vel Total (ft/s) 6.56	8.02	Avg. Vel. (ft/s)		10.17
Max Chl Dpth (ft) 1.78	2.95	Hydr. Depth (ft)		1.75
Conv. Total (cfs) 2692.3	5516.1	Conv. (cfs)		2823.8
Length Wtd. (ft) 39.77		Wetted Per. (ft)		27.51
Min Ch El (ft) 3.07	843.00	Shear (lb/sq ft)		3.00
Alpha 0.00	1.15	Stream Power (lb/ft s)	172.00	0.00
Frctn Loss (ft)		Cum Volume (acre-ft)		
C & E Loss (ft)		Cum SA (acres)		

Warning: Divided flow computed for this cross-section.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	847.64	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.86	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	846.78	Reach Len. (ft)		
Crit W.S. (ft) 133.03	846.78	Flow Area (sq ft)	0.47	69.14
E.G. Slope (ft/ft) 133.03	0.014462	Area (sq ft)	0.47	69.14
Q Total (cfs) 600.06	1249.00	Flow (cfs)	0.73	648.21
Top Width (ft) 79.98	108.18	Top Width (ft)	1.20	27.00
Vel Total (ft/s) 4.51	6.16	Avg. Vel. (ft/s)	1.54	9.38
Max Chl Dpth (ft) 1.66	3.78	Hydr. Depth (ft)	0.39	2.56
		Page 53		

Conv. Total (cfs)	10385.8	existing.rep Conv. (cfs)	6.0	5390.1
4989.7 Length wtd. (ft)	•	Wetted Per. (ft)	1.43	27.78
81.32 Min Ch El (ft)	843.00	Shear (lb/sq ft)	0.30	2.25
1.48 Alpha	1.46	Stream Power (lb/ft s)	172.00	0.00
0.00 Frctn Loss (ft)		Cum Volume (acre-ft)		
C & E Loss (ft)		Cum SA (acres)		

CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft) Right OB	847.99	Element	Left OB	Channel
Vel Head (ft)	0.97	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	847.02	Reach Len. (ft)		
Crit W.S. (ft) 151.90	847.02	Flow Area (sq ft)	0.79	75.49
E.G. Slope (ft/ft) 151.90	0.014734	Area (sq ft)	0.79	75.49
Q Total (cfs) 752.97	1512.00	Flow (cfs)	1.48	757.56
752.97 Top Width (ft) 80.31	108.87	Top width (ft)	1.56	27.00
Vel Total (ft/s) 4.96	6.63	Avg. Vel. (ft/s)	1.86	10.03
Max Chl Dpth (ft)	4.02	Hydr. Depth (ft)	0.51	2.80
1.89 Conv. Total (cfs) 6203.2	12456.4	Conv. (cfs)	12.2	6241.0
Length Wtd. (ft) 81.74		wetted Per. (ft)	1.86	27.78
Min Ch El (ft) 1.71	843.00	Shear (lb/sq ft)	0.39	2.50
Alpha	1.43	Stream Power (lb/ft s)	172.00	0.00
0.00 Frctn Loss (ft)		Cum Volume (acre-ft)		
C & E Loss (ft)		Cum SA (acres)		

E.G. Elev (ft)	848.34	Element	Left OB	Channe1
Right OB Vel Head (ft)	1.10	Wt. n-val.	0.055	0.035
0.055 W.S. Elev (ft)	847.25	Reach Len. (ft)		
Crit W.S. (ft)	847.25	Flow Area (sq ft)	1.19	81.62
170.16 E.G. Slope (ft/ft)	0.015134	Area (sq ft) Page 54	1.19	81.62

	•	-	•		
ex	7.5	sτ	ın	g.	rep

1706 00	-1	2 50	074 37
1796.00	Flow (CTS)	2.56	874.37
109.55	Top Width (ft)	1.91	27.00
7.10	Avg. Vel. (ft/s)	2.15	10.71
4.25	Hydr. Depth (ft)	0.62	3.02
14599.3	Conv. (cfs)	20.8	7107.6
	•		
	Wetted Per. (ft)	2.28	27.78
843.00	Shear (lb/sq ft)	0.49	2.78
1.40	Stream Power (lb/ft s)	172.00	0.00
	• • •		
	Cum Volume (acre-ft)		
	Fum SA (acnos)	*	
	Cuiii SA (acres)	•	
	7.10 4.25 14599.3 843.00	109.55 Top Width (ft) 7.10 Avg. Vel. (ft/s) 4.25 Hydr. Depth (ft) 14599.3 Conv. (cfs) Wetted Per. (ft) 843.00 Shear (lb/sq ft) 1.40 Stream Power (lb/ft s)	109.55 Top Width (ft) 1.91 7.10 Avg. Vel. (ft/s) 2.15 4.25 Hydr. Depth (ft) 0.62 14599.3 Conv. (cfs) 20.8 Wetted Per. (ft) 2.28 843.00 Shear (lb/sq ft) 0.49 1.40 Stream Power (lb/ft s) 172.00 Cum Volume (acre-ft)

SUMMARY OF MANNING'S N VALUES

River:Bluestone Creek

Reach	River Sta.	n1	n2	n3
1 1 1	1500 1400 1300	.055 .055 .055	.035 .035 .035	.055 .055 .055
1 1	1200 1100	.055 .055	.035 .035	. 055 . 055
1 1	1000 900	.055 .055	.035	. 055 . 055
1	800 700	.055	.035 .035	. 055 . 055
1	600 500	.055 .055	.035	.055
1	400 300	.055 .055	.035	.055
1	200 100	.055 .055	.035	.055 .055
4	100	.033	.055	.055

SUMMARY OF REACH LENGTHS

River: Bluestone Creek

Reach	River Sta.	Left	Channel	Right
1 1 1 1 1	1500 1400 1300 1200 1100 1000	97 120 95 35 80 25 Page, 5	101 109 88 44 58 69	105 100 88 47 55 95

	existing.rep								
1	900	2Ŏ .	34	75					
1	800	90	48	15					
1	700	95	67	8					
1	600	63	43	Ī					
1	500	85	68	5					
1	400	125	105	45					
1	300	125	98	20					
1	200	115	105	75					
1	100	Ō	Õ	Ō					

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: Bluestone Creek

Reach	River Sta.	Contr.	Expan
1	1500	.1	.3
1	1400	.1	. 3
1	1300 1200	• 1	, 3
1	1100	1	. 3
ī	1000	. i	. 3
ī	1000 900	. 1	. 3
1	800	.1	. 3
1	700	.1	٠3
1	600	.1	. 3
<u>+</u> 1	500 400	• ‡	
ī	300	<u>:</u> †	. 3
$\bar{1}$	200	.ī	.3
1	100	.1	.3

Reach	River Sta	Bluestone Cre Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(fVs)	(sq ft)	(ft)	
l .	1600	2 Year	378.00	849.00	852.18		852.39	0.002277	3.72	101.78	42.40	0.4
1	1500	10 Year	847.00	849.00	853.41		853.86	0.003137	5.46	167.47	62.47	0.5
1	1600	25 Year	1143.00	649.00	853.99		854.56	0.003451	6.21	205.47	68.63	0.5
l	1500	50 Year	1387.00	849.00	854.42		855.08	0.003550	6.73	246.66	102.12	0.5
	1500	100 Year	1651.00	849.00	854.88		855.58	0.003406	7.03	296.82	115.49	0.5
	<u> </u>											
<u> </u>	1400	2 Year	378.00	848.00	851.76		852.10	0.003599	4.73	87.62	54.00	0.5
<u> </u>	1400	10 Year	847.00	848.00	853.01		853.50	0.003983	6.09	184.33	85.29	0.5
	1400	25.Year	1143.00	848.00	653.65		854.18	0.003836	6.51	242.61	96.39	0.50
<u> </u>	1400	50 Year	1387.00	848.00	854.14		854.69	0.003615	6.72	292.19	105.62	0.50
<u> </u>	1400	100 Year	1651.00	848.00	854.64		855.20	0.003317	6.91	348.19	116.94	0.54
	l											
<u> </u>	1300	2 Year	419.00	848.00	850.78	850.53	851.46	0.009134	6.65	67.85	44.21	0.8
<u> </u>	1300	10.Year	928.00	848.00	852.45		853.03	0.004402	6.72	196.59	95.28	0.6
	1300	25 Year	1249.00	848.00	853.24		853.78	0.003468	6.76	274.86	104.40	0.56
<u> </u>	1300	50 Year	1512.00	848.00	853.77		854.31	0.003128	6.91	332.32	110.61	0.54
	1300	100 Year	1796.00	848.00	854.32		854.86	0.002826	7.03	394.18	115.56	0.52
	1000	 	440.00	047.00	050.70		250.00	0.004000	2.50	445.48		
<u> </u>	1200	2 Year	419.00	847.00	850.79		850.99	0.001926	3.59	117.40	44.35	0.36
<u> . </u>		10 Year	928.00	847.00	852.34		852.71	0.002053	4.96	202.64	67.14	0.42
	1200	25 Year 50 Year	1249.00 1512.00	847.00 847.00	853.05 853.55		853.51 854.08	0.002116	5.58 6.03	253.98	76.37	0.44
·	1200	100 Year	1796.00	847.00	854.02		854.62	0.002180		293.32	82.75	0.45
	1200	100 1001	1736.00	047.00	634.02		604.62	0.002246	6.47	334.05	88.97	0.47
	1100	2 Year	419.00	847.00	850.29		850.81	0.007496	5.81	72.52	20 40	0.71
 	1100	10 Year	928.00	847.00	851.72		852.52	0.007496	7.33	139.94	38.48 55.87	0.71
·	1100	25 Year	1249.00	847.00	852.35		853.32	0.005832	7.33 8.14	177.79	64.25	0.69
	1100	50 Year	1512.00	847.00	852.75	852.17	853.87	0.006038	8.82	204.81	69.96	0.73
	1100	100 Year	1796.00	847.00	853.11	852.61	854.40	0.006351	9.52	231.23	75.12	0.76
	11.00	1.00 1.00	1,55.50		000.11	002.01		0.000331	3.02	231.23	75.12	0.70
	1000	2 Year	419.00	847.00	850.25		850.51	0.002319	4.03	104.21	35.98	0.41
	1000	10 Year	928.00	847.00	851.64		852.20	0.003190	6.01	162.38	51.83	0.51
``````````````````````````````````````	1000	25 Year	1249.00	847.00	852.24		852.98	0.003649	7.00	196.52	62.48	0.55
	1000	50 Year	1512.00	847.00	852.61		853.52	0.004099	7.78	220.80	69.07	0.59
	1000	100 Year	1796.00	647.00	852.93		854.02	0.004634	8.60	243.89	74.79	0.64
		<del></del>									7	
	900	2 Year	419.00	846.00	849.54	849.13	850.19	0.008345	6.50	66.68	38.23	0.76
	900	10 Year	928.00	846.00	850.84	850.60	851.83	0.007815	8.32	133.58	64.53	0.79
	900	26 Year	1249.00	846.00	851.23	851.23	852.56	0.009216	9.72	160.73	72.36	0.88
	900	50 Year	1512.00	846.00	851.67	851.67	853.08	0.008785	10.19	193.88	80.90	0.87
	900	100 Year	1796.00	846.00	852.08	852.08	853.57	0.008494	10.66	228.74	88.71	0.87
	800	2 Year	419.00	846.20	849,83		849.94	0.001159	2.89	191.91	117.17	0.30
	800	10 Year	928.00	846.20	851.36		851.50	0.000918	3.43	412.38	164.63	0.29
	800	25 Year	1249.00	846.20	851.89		852.06	0.000998	3.86	502.30	172.94	0.31
	800	50 Year	1512.00	846.20	852.29		852.48	0.001034	4.14	572.85	179.05	0.32
	800	100 Year	1796.00	846.20	852.68		852.89	0.001069	4.41	643.93	184.94	0.33
								1				
	700	2 Year	419.00	846.00	849.62		849.86	0.002214	3.90	107.47	37.67	0.41
	700	10 Year	928.00	846.00	850.97		851.40	0.002679	5.44	209.14	103.00	0.47
	700	25 Year	1249.00	846.00	851.35		851.94	0.003342	6.46	250.75	113.34	0.54
	700	50 Year	1512.00	846.00	851.66		852.35	0.003710	7.11	286.27	121.46	0.57
	700	100 Year	1796.00	846.00	851.95		852.75	0.004040	7.72	323.32	129.39	0.60
								I				
	600	2 Year	419.00	845.00	849.32		849.67	0.003345	4.71	89.53	35.52	0.50
	600	10 Year	928.00	845.00	850.66	849.57	851.20	0.003720	6.20	211.20	144.10	0.55
	600	26 Year	1249.00	845.00	851.17		851.73	0.003722	6.62	285.04	145.71	0.56
	600	50 Year	1512.00	845.00	851.54		852.11	0.003677	6.87	339.04	146.88	0.56
	600	100 Year	1796.00	845.00	851.90		852.48	0.003652	7.12	391.63	148.01	0.57
	600	2 Year	419.00	845.64	849.01		849.47	0.005935	5.43	78.57	41.83	0.65
	500	10 Year	928.00	845.64	850.49	849.7B	851.04	0.004133	6.31	212.05	171.04	0.59
	500	25 Year	1249.00	845.64	851.09	850.64	851.58	0.003397	6.33	316.87	178.44	0.54
	500	50 Year	1512.00	845.64	851.49	850.91	851.96	0.003104	6.44	389.51	183.39	0.53
	500	100 Year	1796.00	845.64	851.87		852.34	0.002921	6.58	459.92	188.07	0.52
	400											<del></del> -
	400	2 Year	419.00	845.52	848.39		848.99	0.008031	6.22	67.38	31.05	0.74
	400	10 Year	928.00	845.52	849.58	849.58	850.61	0.008968	8.34	132.34	88.29	0.83
	400	25 Year	1249.00	845.52	850.16	850.16	851.22	0.008144	8.75	189.85	108.00	0.81
	400	50 Year	1512.00	845.52	850.54	850.54	851.63	0.007912	9.10	232.86	120.79	0.81
	400	100 Year	1796.00	845.52	850.85	850.85	852.02	0.008098	9.59	271.97	131.34	0.82
	200	0.75	422.05	044.05								
	300	2 Year	419.00	844.00	846.81	846.81	847.81	0.015301	8.01	52.28	26.65	1.01
	300	10 Year	928.00	844.00	848.58	848.58	849.67	0.008644	8.56	127.44	83.71	0.82
	300	25 Year	1249.00	844.00	849.38	849.38	850.32	0.006228	8.37	216.25	134.92	0.72
	300	50 Year	1512.00	844.00	849.70	849.70	850.70	0.006282	8.83	260.36	140.38	0.73

HEC-RAS_Plan: 19 River: Bluestone Creek Reach: 1 (Continued) ...

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev.	, Crit W.S.	E.G. Elev	E.G. Slope	Vet Chnl	Flow Area	Top Width	Froude # Chl
	1		(cfs)	(ft)	(ft)	(ft)	(ft) = -2.	(fVft)	(ft/s)	(sq ft)	(ft)	
1	300	100 Year	1796.00	844.00	849.93	849.93	851.05	0.006844	9.53	293.68	144.38	0.77
	Latering Law		,									
1	200	2 Year	419.00	843.00	846.53	845.76	846.77	0.005017	4.55	116.41	62.21	0.57
1	200	10 Year	928.00	843.00	847.72	846.73	848.14	0.005393	6.14	206.25	92.06	0.64
1	200	25 Year	1249.00	843.00	847.96	847.10	848.59	0.007417	7.59	229.41	98.97	0:75
1754	200	50 Year	1512.00	843.00	848.24	847.51	849.00	0.008200	8.44	256.82	102.51	0.80
1	200	100 Year	1796.00	843.00	848.51	847:83	849.39	0.008588	9.09	285.63	105.46	0.83
		9 <u>21 - Bulletin</u>					1.5					
137	100	2 Year	419.00	843.00	845.28	845.28	845.88	0.022329	7.44	73.56	59:40	1.18
17-12 149.I	100	10 Year	928.00	843.00	845.95	845.95	847.10	0.028303	10.17	115.73	65.43	1.30
15,475.	100	25 Year	1249.00	843.00	846.78	846.78	847.64	0.014462	9.38	202.64	108.18	1.03
1"	100	50 Year	1512.00	843.00	847.02	847.02	847.99	0.014734	10.03	228.19	108.87	1.08
1:	100	100 Year	1796.00	843.00	847.25	847.25	848.34	0.015134	10.71	252.96	109.55	1.09

# Appendix C

### Temp Bridge.rep.txt

HEC-RAS Version 4.1.0 Jan 2010 U.S. Army Corps of Engineers Hydrologic Engineering Center 609 Second Street Davis, California

X	Х	XXXXXX	XXXX			XXXX		>	OX	XXXX
X	X	X	X	X		X	X	Х	Х	X
X	Х	X	Х			Х	Х	Х	Х	X
XXX	XXXX	XXXX	X		XXX	XXXX		XXXXXX		XXXX
Х	X	X	X			X	X	X	X	X
Х	Х	Х	X	X		Х	Х	Х	X	X
Х	Х	XXXXXX	XX	XX		X	X	X	X	XXXXX

PROJECT DATA

Project Title: Bluestone Creek WEU 51

Project File: existing.prj Run Date and Time: 9/13/2013 7:31:51 AM

Project in English units

PLAN DATA

Plan Title: Plan 21

Plan File: u:\2027051372\Project\Task #20 EQT WEU 51\HEC-RAS\existing.p21

Geometry Title: Proposed Temponary Bridge Crossing/ Geometry File: u:\2027051372\Project\Task #20 EQT WEU

51\HEC-RAS\existing.q05

Flow Title

: Existing
: u:\2027051372\Project\Task #20 EQT WEU Flow File

51\HEC-RAS\existing.f01

Plan Summary Information:

Number of: Cross Sections = Multiple Openings = 15 Culverts 0 Inline Structures = Bridges 1 Lateral Structures = 0

Computational Information

Water surface calculation tolerance = 0.01 Critical depth calculation tolerance = 0.01 Maximum number of iterations = 20 Maximum difference tolerance = 0.3Flow tolerance factor 0.001

**Computation Options** 

Critical depth computed only where necessary

Conveyance Calculation Method: At breaks in n values only

Friction Slope Method: Computational Flow Regime: Average Conveyance Subcritical Flow

# Temp Bridge.rep.txt

Flow Title: Existing

Flow File: u:\2027051372\Project\Task #20 EQT WEU 51\HEC-RAS\existing.f01

Flow Data (cfs)

River	Reach	RS 100 Years	2 Year	10 Year
25 Year	50 Year	100 Year		
Bluestone	creek 1	1500	378	847
1143	1387	1651	5.0	<b>.</b>
Bluestone	Creek 1	1300	419	928
1249	1512	1796		320

### **Boundary Conditions**

River Downstream	Reach	Profile	Upstream
Bluestone Creek Critical	1	2 Year	
Bluestone Creek Critical	1	10 Year	
Bluestone Creek Critical	1	25 Year	
Bluestone Creek Critical		50 Year	
Bluestone Creek Critical	1	100 Year	

### **GEOMETRY DATA**

Geometry Title: Proposed Temporary Bridge Crossing
Geometry File: u:\2027051372\Project\Task #20 EQT WEU 51\HEC-RAS\existing.g05

**CROSS SECTION** 

RIVER: Bluestone Creek

REACH: 1 RS: 1500

**INPUT** 

Description: X-1500

Station El	evation [	ata	num=	13					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	867	23	855	47	854	68	854	77	853
94	852	99	849	107	849	115	849	129	850
137	854	142	855	159	868				
Manning's	n Values		num-	2					

Right 137 Lengths: Left Channel Right 105 Bank Sta: Left Coeff Contr. Expan. 101 Page 2

Temp Bridge.rep.txt

# CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	852.40	Element	Left OB	Channel
Right OB Vel Head (ft)	0.21	wt. n-Val.	0.055	0.035
W.S. Elev (ft)	852.18	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	0.28	101.57
E.G. Slope (ft/ft)	0.002272	Area (sq ft)	0.28	101.57
Q Total (cfs)	378.00	Flow (cfs)	0.07	377.93
Top width (ft)	42.43	Top Width (ft)	3.07	39.36
Vel Total (ft/s)	3.71	Avg. Vel. (ft/s)	0.26	3.72
Max Chl Dpth (ft)	3.18	Hydr. Depth (ft)	0.09	2.58
Conv. Total (cfs)	7930.1	Conv. (cfs)	1.5	7928.6
Length Wtd. (ft)	100.96	wetted Per. (ft)	3.07	40.74
Min Ch El (ft)	849.00	Shear (lb/sq ft)	0.01	0.35
Alpha	1.00	Stream Power (lb/ft s)	159.00	0.00
0.00 Frctn Loss (ft)	0.28	Cum Volume (acre-ft)	0.11	1.94
0.16 C & E Loss (ft) 0.14	0.01	Cum SA (acres)	0.23	0.77

E.G. Elev (ft)	853.86	Element	Left OB	Channel
Right OB Vel Head (ft)	0.45	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	853.41	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	16.24	151.50
E.G. Slope (ft/ft)	0.003125	Area (sq ft)	16.24	151.50
Q Total (cfs)	847.00	Flow (cfs)	20.83	826.17
Top Width (ft)	62.52	Top Width (ft)	20.69	41.82
vel Total (ft/s)	5.05	Avg. Vel. (ft/s)	1.28	5.45
Max Chl Dpth (ft)	4.41	Hydr. Depth (ft)	0.78	3.62
Conv. Total (cfs)	15152.4	Conv. (cfs)	372.6	14779.8
Length Wtd. (ft)	100.63	Wetted Per. (ft)	20.75	43.49
Min Ch El (ft)	849.00	Shear (1b/sq ft) Page 3	0.15	0.68

Temp	Rri	dae.	ren.	txt

Alpha 0.00	1.14	Stream Power (lb/ft s)	159.00	0.00
Frctn Loss (ft) 0.43	0.35	Cum Volume (acre-ft)	0.63	2.95
C & E Loss (ft)	0.00	Cum SA (acres)	0.52	0.81

# CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	854.55	Element	Left OB	Channel
Right OB Vel Head (ft)	0.58	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	853.98	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	29.43	175.55
E.G. Slope (ft/ft)	0.003471	Area (sq ft)	29.43	175.55
Q Total (cfs)	1143.00	Flow (cfs)	51.02	1091.98
Top Width (ft)	68.76	Top width (ft)	25.80	42.96
vel Total (ft/s)	5.58	Avg. Vel. (ft/s)	1.73	6.22
Max Chl Dpth (ft)	4.98	Hydr. Depth (ft)	1.14	4.09
Conv. Total (cfs)	19401.1	Conv. (cfs)	866.0	18535.1
Length Wtd. (ft)	100.49	Wetted Per. (ft)	25.88	44.76
Min Ch El (ft)	849.00	Shear (lb/sq ft)	0.25	0.85
Alpha	1.19	Stream Power (lb/ft s)	159.00	0.00
0.00 Frctn Loss (ft)	0.37	Cum Volume (acre-ft)	0.97	3.40
0.66 C & E Loss (ft) 0.44	0.01	Cum SA (acres)	0.63	0.82

E.G. Elev (ft)	855.07	Element	Left OB	Channel
Right OB Vel Head (ft)	0.67	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 105.00	854.40	Reach Len. (ft)	97.00	101.00
Crit W.S. (ft) 0.40		Flow Area (sq ft)	50.79	193.76
E.G. Slope (ft/ft) 0.40	0.003602	Area (sq ft)	50.79	193.76
Q Total (cfs) 0.22	1387.00	Flow (cfs)	76.51	1310.27
Top Width (ft) 2.01	101.64	Top Width (ft)	56.63	43.00
2.01		Page 4		

Vel Total (ft/s)	Temp 5.66	Bridge.rep.txt Avg. Vel. (ft/s)	1.51	6.76
0.55 Max Chl Dpth (ft)	5.40	Hydr. Depth (ft)	0.90	4.51
0.20 Conv. Total (cfs)	23110.8	Conv. (cfs)	1274.9	21832.2
3.7 Length Wtd. (ft)	100.39	Wetted Per. (ft)	56.72	44.81
2.05 Min Ch El (ft) 0.04	849.00	Shear (1b/sq ft)	0.20	0.97
0.04 Alpha 0.00	1.35	Stream Power (1b/ft s)	159.00	0.00
Fretn Loss (ft)	0.37	Cum Volume (acre-ft)	1.27	3.70
C & E Loss (ft) 0.48	0.03	Cum SA (acres)	0.74	0.82

# CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	855.58	Element	Left OB	Channel
Right OB Vel Head (ft)	0.71	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	854,86	Reach Len. (ft)	97.00	101.00
105.00 Crit W.S. (ft)		Flow Area (sq ft)	79.58	213.66
1.87 E.G. Slope (ft/ft)	0.003448	Area (sq ft)	79.58	213.66
1.87 Q Total (cfs)	1651.00	Flow (cfs)	140.41	1508.91
1.67 Top_Width (ft)	115.06	Top Width (ft)	67.74	43.00
4.32 Vel Total (ft/s)	5.59	Avg. Vel. (ft/s)	1.76	7.06
0.89 Max Chl Dpth (ft)	5.86	Hydr. Depth (ft)	1.17	4.97
0.43 Conv. Total (cfs)	28116.5	Conv. (cfs)	2391.3	25696.8
28.5 Length Wtd. (ft)	100.27	Wetted Per. (ft)	67.84	44.81
4.41 Min Ch El (ft)	849.00	Shear (lb/sq ft)	0.25	1.03
0.09 Alpha	1.46	Stream Power (lb/ft s)	159.00	0.00
0.00 Frctn Loss (ft)	0.34	Cum Volume (acre-ft)	1.60	3.99
0.96 C & E Loss (ft) 0.51	0.04	Cum SA (acres)	0.81	0.82

# CROSS SECTION

RIVER: Bluestone Creek REACH: 1 RS: 1400

INPUT Description: X-1400

	N.			
		np Bridge.rep.txt	1.7	
Station Elevation Data         Sta Elev Sta         0 863 17         101 852 110         142 855 168	num= Elev 855 848 868	12 Sta Elev Sta 48 853 57 117 848 126	Elev Sta 851 85 849 135	Elev 852 854
Manning's n Values Sta n Val Sta 0 .055 101	num= n Val .035	3 Sta n Val 135 .055		•
Bank Sta: Left Right 101 135	Lengths:	Left Channel Right 120 109 100	Coeff Contr.	Expan.
CROSS SECTION OUTPUT Pro	file #2 Ye	ar		
E.G. Elev (ft) Right OB	852.10	Element	Left OB	Channel
Vel Head (ft)	0.34	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	851.76	Reach Len. (ft)	120.00	109.00
100.00 Crit W.S. (ft)		Flow Area (sq ft)	9.38	78.42
E.G. Slope (ft/ft)	0.003584	Area (sq ft)	9.38	78.42
Q Total (cfs)	378.00	Flow (cfs)	7.94	370.06
Top Width (ft)	54.13	Top Width (ft)	24.70	29.43
<pre>vel Total (ft/s)</pre>	4.31	Avg. vel. (ft/s)	0.85	4.72
Max Chl Dpth (ft)	3.76	Hydr. Depth (ft)	0.38	2.66
Conv. Total (cfs)	6314.1	Conv. (cfs)	132.7	6181.5
Length Wtd. (ft)	109.31	Wetted Per. (ft)	24.80	31.00
Min Ch El (ft)	848.00	Shear (1b/sq ft)	0.08	0.57
Alpha	1.18	Stream Power (lb/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.49	Cum Volume (acre-ft)	0.09	1.73
0.16 C & E Loss (ft) 0.14	0.01	Cum SA (acres)	0.20	0.69

Warning: Divided flow computed for this cross-section.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	853.51	Element	Left OB	Channel
Right OB Vel Head (ft)	0.49	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 100.00	853.02	Reach Len. (ft)	120.00	109.00
Crit W.S. (ft)		Flow Area (sq ft)	67.80	117.39
E.G. Slope (ft/ft)	0.003941	Area (sq ft) Page 6	67.80	117.39

тетр	Bridge rep txt	
7.00	Flow (cfs)	 13

Q Total (cfs)	847.00	Flow (cts)	134.72	712.28
Top Width (ft)	85.46	Top Width (ft)	53.23	32.23
Vel Total (ft/s)	4.57	Avg. Vel. (ft/s)	1.99	6.07
Max Chl Dpth (ft)	5.02	Hydr. Depth (ft)	1.27	3.64
Conv. Total (cfs)	13491.8	Conv. (cfs)	2145.9	11345.9
Length Wtd. (ft)	110.92	wetted Per. (ft)	53.47	34.17
Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.31	0.85
Alpha	1.51	Stream Power (1b/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.45	Cum Volume (acre-ft)	0.53	2.64
0.43 C & E Loss (ft) 0.33	0.01	Cum SA (acres)	0.44	0.73

# CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft) Right OB	854.17	Element	Left OB	Channel
Vel Head (ft)	0.54	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 100.00	853.63	Reach Len. (ft)	120.00	109.00
Crit W.S. (ft)		Flow Area (sq ft)	103.77	137.70
E.G. Slope (ft/ft)	0.003879	Area (sq ft)	103.77	137.70
Q Total (cfs)	1143.00	Flow (cfs)	243.26	899.74
Top Width (ft)	96.18	Top Width (ft)	62.84	33.34
Vel Total (ft/s)	4.73	Avg. Vel. (ft/s)	2.34	6.53
Max Chl Dpth (ft)	5.63	Hydr. Depth (ft)	1.65	4.13
Conv. Total (cfs)	18352.5	Conv. (cfs)	3905.8	14446.7
Length Wtd. (ft)	111.51	Wetted Per. (ft)	63.10	35.45
Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.40	0.94
Alpha	1.55	Stream Power (1b/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.41	Cum Volume (acre-ft)	0.83	3.04
0.66 C & E Loss (ft) 0.44	0.00	Cum SA (acres)	0.53	0.73

E.G. Elev (ft)	Temp 854.67	Bridge.rep.txt Element	Left OB	Channel
Right OB	057.07	L remerre	Leit OB	Chamer
Vel Head (ft) 0.055	0.56	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	854.11	Reach Len. (ft)	120.00	109.00
100.00 Crit w.s. (ft)		Flow Area (sq ft)	135.62	153.86
0.05 E.G. Slope (ft/ft)	0.003699	Area (sq ft)	135.62	153.86
0.05 Q Total (cfs)	1387.00	Flow (cfs)	344.59	1042.40
0.01 Top width (ft)	105.05	Top width (ft)	70.26	34.00
0.79 Vel Total (ft/s)	4.79	Avg. Vel. (ft/s)	2.54	6.78
0.24 Max Chl Dpth (ft) 0.06	6.11	Hydr. Depth (ft)	1.93	4.53
Conv. Total (cfs)	22805.1	Conv. (cfs)	5665.8	17139.1
Length Wtd. (ft) 0.80	111.85	Wetted Per. (ft)	70.53	36.20
Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.44	0.98
0.01 Alpha	1.57	Stream Power (lb/ft s)	168.00	0.00
0.00 Frctn Loss (ft)	0.39	Cum Volume (acre-ft)	1.06	3.30
0.81 C & E Loss (ft) 0.47	0.00	Cum SA (acres)	0.59	0.73
=				

E.G. Elev (ft)	855.19	Element	Left OB	Channel
Right OB Vel Head (ft)	0.57	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 100.00	854.62	Reach Len. (ft)	120.00	109.00
Crit W.S. (ft) 1.35		Flow Area (sq ft)	173.34	171.14
E.G. Slope (ft/ft) 1.35	0.003373	Area (sq ft)	173.34	171.14
Q Total (cfs) 0.97	1651.00	Flow (cfs)	461.45	1188.58
Top Width (ft) 4.35	116.49	Top Width (ft)	78.14	34.00
vel Total (ft/s) 0.72	4.77	Avg. Vel. (ft/s)	2.66	6.95
Max Chl Dpth (ft) 0.31	6.62	Hydr. Depth (ft)	2.22	5.03
Conv. Total (cfs) 16.7	28428.9	Conv. (cfs)	7945.9	20466.4
Length Wtd. (ft) 4.40	112.12	Wetted Per. (ft)	78.43	36.20
Min Ch El (ft) 0.06	848.00	Shear (lb/sq ft)	0.47	1.00
Alpha 0.00	1.61	Stream Power (lb/ft s)	168.00	0.00
Frctn Loss (ft)	0.35	Cum Volume (acre-ft) Page 8	1.32	3.55

0.05	Tem	p Bridge.rep.txt		
0.95 C & E Loss (ft) 0.50	0.01	Cum SA (acres)	0.65	0.74
CROSS SECTION				
RIVER: Bluestone Creek REACH: 1	RS: 1300			

				•			
INPUT Description: X-1300 Station Elevation Data Sta Elev Sta 0 860 45 110 848 116 183 876	num= Elev 852 848	11 Sta 66 123	Elev 851 848	Sta 80 129	Elev 851 851	Sta 100 147	Elev 850 854
Manning's n Values Sta n Val Sta 0 .055 100	num= n Val .035	3 Sta 129	n Val .055				
Bank Sta: Left Right 100 129	Lengths:	Left Ch 95	annel 88	Right 88	Coeff (	Contr. .1	Expan.
CROSS SECTION OUTPUT Pro	file #2 Ye	ar					

E.G. Elev (ft)	851.59	Element	Left OB	Channel
Right OB Vel Head (ft)	0.48	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.11	Reach Len. (ft)	95.00	88.00
88.00 Crit W.S. (ft)	850.53	Flow Area (sq ft)	13.94	71.24
0.04 E.G. Slope (ft/ft) 0.04	0.005610	Area (sq ft)	13.94	71.24
Q Total (cfs) 0.01	419.00	flow (cfs)	14.87	404.11
Top Width (ft) 0.67	66.02	Top Width (ft)	36.35	29.00
vel Total (ft/s) 0.29	4.92	Avg. Vel. (ft/s)	1.07	5.67
Max Chl Dpth (ft) 0.06	3.11	Hydr. Depth (ft)	0.38	2.46
Conv. Total (cfs)	5593.9	Conv. (cfs)	198.6	5395.2
Length Wtd. (ft) 0.68	88.12	Wetted Per. (ft)	36.38	29.91
Min Ch El (ft) 0.02	848.00	Shear (lb/sq ft)	0.13	0.83
Alpha 0.00	1.29	Stream Power (lb/ft s)	183.00	0.00
Frctn Loss (ft) 0.16	0.21	Cum Volume (acre-ft)	0.06	1.54
C & E Loss (ft) 0.14	0.10	Cum SA (acres)	0.11	0.62

Temp Bridge.rep.txt
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance)
is less than 0.7 or greater than 1.4.
This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	853.05	Element	Left OB	Channel
Right OB Vel Head (ft)	0.55	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.51	Reach Len. (ft)	95.00	88.00
88.00 Crit W.S. (ft)		Flow Area (sq ft)	83.06	111.68
6.81 E.G. Slope (ft/ft)	0.004144	Area (sq ft)	83.06	111.68
6.81 Q Total (cfs)	928.00	Flow (cfs)	183.66	734.63
9.71 Top width (ft)	95.88	Top Width (ft)	57.85	29.00
9.04 Vel Total (ft/s)	4.60	Avg. Vel. (ft/s)	2.21	6.58
1.43 Max Chl Dpth (ft)	4.51	Hydr. Depth (ft)	1.44	3.85
0.75 Conv. Total (cfs)	14416.5	Conv. (cfs)	2853.1	11412.5
150.8 Length Wtd. (ft)	88.74	Wetted Per. (ft)	57.94	29.91
9.16 Min Ch El (ft)	848.00	Shear (lb/sq ft)	0.37	0.97
0.19 Alpha	1.66	Stream Power (lb/ft s)	183.00	0.00
0.00 Frctn Loss (ft)	0.24	Cum Volume (acre-ft)	0.33	2.35
0.42 C & E Loss (ft) 0.32	0.06	Cum SA (acres)	0.29	0.65

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

# CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	853.76	Element	Left OB	Channel
Right OB Vel Head (ft)	0.55	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	853.21	Reach Len. (ft)	95.00	88.00
88.00 Crit W.S. (ft)		Flow Area (sq ft)	125.43	132.21
14.71 E.G. Slope (ft/ft)	0.003550	Area (sq ft)	125.43	132.21
14.71 Q Total (cfs)	1249.00	Flow (cfs)	323.02	900.87
25.11 Top Width (ft)	104.12	Top Width (ft)	61.83	29.00
13.29 Vel_Total (ft/s)	4.59	Avg. Vel. (ft/s)	2.58	6.81
1.71		- 44		

Page 10

	Temp	Bridge.rep.txt	•	
Max Chl Dpth (ft)	5.21	Hydr. Depth (ft)	2.03	4.56
Conv. Total (cfs) 421.4	20962.3	Conv. (cfs)	5421.3	15119.6
Length Wtd. (ft)	89.01	Wetted Per. (ft)	61.99	29.91
13.47 Min Ch El (ft)	848.00	Shear (1b/sq ft)	0.45	0.98
0.24 Alpha	1.68	Stream Power (lb/ft s)	183.00	0.00
0.00 Freth Loss (ft)	0.24	Cum Volume (acre-ft)	0.51	2.70
0.64 C & E Loss (ft) 0.43	0.02	Cum SA (acres)	0.36	0.65
CROSS SECTION OUTPUT	Profile #50 Yea	ar		
E.G. Elev (ft) Right OB	854.29	Element	Left OB	Channel
Vel Head (ft) 0.055	0.55	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 88.00	853.73	Reach Len. (ft)	95.00	88.00
Crit W.S. (ft) 22.41		Flow Area (sq ft)	158.27	147.26
E.G. Slope (ft/ft) 22.41	0.003237	Area (sq ft)	158.27	147.26
Q Total (cfs)	1512.00	Flow (cfs)	440.51	1029.46
42.03 Top Width (ft)	110.15	Top Width (ft)	64.75	29.00
16.40 Vel Total (ft/s)	4.61	Avg. Vel. (ft/s)	2.78	6.99
1.88 Max Chl Dpth (ft) 1.37	5.73	Hydr. Depth (ft)	2.44	5.08
Conv. Total (cfs)	26577.3	Conv. (cfs)	7743.1	18095.4
Length Wtd. (ft) 16.63	89.17	Wetted Per. (ft)	64.95	29.91
Min Ch El (ft) 0.27	848.00	Shear (lb/sq ft)	0.49	0.99
0.27 Alpha 0.00	1.68	Stream Power (lb/ft s)	183.00	0.00
Frctn Loss (ft) 0.78	0.24	Cum Volume (acre-ft)	0.66	2.92
C & E Loss (ft) 0.46	0.00	Cum SA (acres)	0.41	0.66
CROSS SECTION OUTPUT	Profile #100 Ye	ear		
E.G. Elev (ft) Right OB	854.84	Element	Left OB	Channel
Vel Head (ft) 0.055	0.55	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	854.29	Reach Len. (ft)	95.00	88.00
88.00 Crit W.S. (ft)		Flow Area (sq ft) Page 11	195.19	163.41

22.20		Te	emp Brid	ge.rep.	txt	•		
32.29 E.G. Slope (ft/f	t)	0.002890	Area	a (sq.f1	t)	199	5.19	163.41
32.29 Q_Total (cfs)		1796.00	Flov	v (cfs)		571	L.83	1156.93
67.24 Top Width (ft)		115.35	Тор	Width (	(ft)	67	7.88	29.00
18.47 Vel Total (ft/s)		4.59	Avg.	vel.	(ft/s)	2	2.93	7.08
2.08 Max Chl Dpth (ft	:)	6.29	Hydr	. Depti	n (ft)	2	2.88	5.63
1.75 Conv. Total (cfs 1250.7	<b>(</b> )	33409.1	Conv	/. (cfs)	)	1063	37.2	21521.1
Length Wtd. (ft)		89.32	Wett	ed Per.	(ft)	68	3.13	29.91
18.80 Min Ch El (ft)		848.00	Shea	ar (1b/s	q ft)	0	.52	0.99
0.31 Alpha		1.67	Stre	am Powe	er (1b/ft	s) 183	3.00	0.00
0.00 Frctn Loss (ft) 0.91		0.23	Cum	<b>Volume</b>	(acre-ft)	) (	.82	3.13
C & E Loss (ft) 0.48		0.01	Cum	SA (acr	es)	0	.45	0.66
CROSS SECTION								
RIVER: Bluestone C REACH: 1	reek	RS: 1200						
INPUT Description: X-120 Station Elevation Sta Elev 0 857 102 848 149 855	0 Data Sta 27 115 190	num= Elev 856 847 876	12 Sta 58 125	Elev 854 848	Sta 79 134	E1ev 852 848	Sta 94 137	Elev 851 850
Manning's n Values Sta n Val 0 .055	Sta 94	num= n Val .035	3 Sta 137	n Val .055				
Bank Sta: Left R 94	ight 137	Lengths:		annel 44	Right 47	Coeff C	ontr. .1	Expan.
CROSS SECTION OUTP	UT Prof	file #2 Y	ear					
E.G. Elev (ft) Right OB		851.28	Elem	ent		Lef	t OB	Channel
Vel Head (ft) 0.055		0.16	Wt.	n-Val.		0.	055	0.035
W.S. Elev (ft) 47.00		851.13	Reac	h Len.	(ft)	35	.00	44.00
Crit W.S. (ft) 1.52			Flow	Area (	sq ft)	0	.12	130.90
E.G. Slope (ft/f	t)	0.001332	Area	(sq ft	)	. 0	. 12	130.90
Q Total (cfs)		419.00	Flow	(cfs)		0	.02	418.01
0.97 Top Width (ft)		47.58	Top Page	Width ( e 12	ft)	1	. 88	43.00

#### Temp Bridge.rep.txt 2.70 Vel Total (ft/s) 3.16 Avg. Vel. (ft/s) 0.16 3.19 0.64 Max Chl Dpth (ft) 4.13 Hydr. Depth (ft) 0.06 3.04 0.56 Conv. Total (cfs) 26.5 11481.0 Conv. (cfs) 0.5 11454.0 Length Wtd. (ft) 2.93 43.97 wetted Per. (ft) 1.89 44.24 Min Ch El (ft) 0.04 847.00 Shear (1b/sq ft) 0.01 0.25 **Alpha** 1.02 Stream Power (1b/ft s) 190.00 0.00 0.00 Frctn Loss (ft) 0.09 Cum Volume (acre-ft) 0.05 1.34 0.15 0.02

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4. This may indicate the need for additional cross sections.

Cum SA (acres)

0.07

0.54

#### CROSS SECTION OUTPUT Profile #10 Year

C & E Loss (ft)

0.14

E.G. Elev (ft)	852.75	Element	Left OB	Channel
Right OB Vel Head (ft)	0.36	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.39	Reach Len. (ft)	35.00	44.00
47.00 Crit W.S. (ft)		Flow Area (sq ft)	14.15	185.27
6.85 E.G. slope (ft/ft)	0.001963	Area (sq ft)	14.15	185.27
6.85 Q Total (cfs)	928.00	Flow (cfs)	13.84	905.40
8.76 Top_Width (ft)	67.83	Top width (ft)	19.10	43.00
5.74 Vel_Total (ft/s)	4.50	Avg. Vel. (ft/s)	0.98	4.89
1.28 Max Chl Dpth (ft)	5.39	нydr. Depth (ft)	0.74	4.31
1.20 Conv. Total (cfs)	20947.3	Conv. (cfs)	312.5	20437.1
197.7 Length Wtd. (ft)	43.80	Wetted Per. (ft)	19.15	44.24
6.21 Min Ch El (ft)	847.00	Shear (lb/sq ft)	0.09	0.51
0.14 Alpha	1.15	Stream Power (lb/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.13	Cum Volume (acre-ft)	0.22	2.05
0.41 C & E Loss (ft) 0.31	0.04	Cum SA (acres)	0.20	0.58
O.JI				

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections. Page 13

#### CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft) Right OB	853.49	Element	Left OB	Channel
Vel Head (ft) 0.055	0.47	Wt. n-val.	0.055	0.035
W.S. Elev (ft) 47.00	853.03	Reach Len. (ft)	35.00	44.00
Crit W.S. (ft) 10.98		Flow Area (sq ft)	28.39	212.58
E.G. Slope (ft/ft) 10.98	0.002158	Area (sq ft)	28.39	212.58
Q Total (cfs) 17.22	1249.00	Flow (cfs)	37.94	1193.84
Top Width (ft) 7.26	76.02	Top Width (ft)	25.76	43.00
vel Total (ft/s) 1.57	4.96	Avg. Vel. (ft/s)	1.34	5.62
Max Chl Dpth (ft) 1.51	6.03	Hydr. Depth (ft)	1.10	4.94
Conv. Total (cfs) 370.6	26887.8	Conv. (cfs)	816.8	25700.4
Length Wtd. (ft) 7.87	43.67	Wetted Per. (ft)	25.85	44.24
Min Ch El (ft) 0.19	847.00	Shear (1b/sq ft)	0.15	0.65
Alpha 0.00	1.23	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft) 0.61	0.15	Cum Volume (acre-ft)	0.34	2.35
C & E Loss (ft) 0.41	0.06	Cum SA (acres)	0.26	0.58

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	854.05	Element	Left OB	Channe1
Right OB Vel Head (ft) 0.055	0.54	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 47.00	853.50	Reach Len. (ft)	35.00	44.00
47.00 Crit W.S. (ft) 14.71		Flow Area (sq ft)	41.85	233.05
E.G. Slope (ft/ft)	0.002248	Area (sq ft)	41.85	233.05
14.71 Q Total (cfs)	1512.00	Flow (cfs)	65.67	1420.38
25.95 Top Width (ft)	82.17	Top Width (ft)	30.76	43.00
8.40 Vel_Total (ft/s)	5.22	Avg. Vel. (ft/s)	1.57	6.09
1.76 Max Chl Dpth (ft)	6.50	Hydr. Depth (ft) Page 14	1.36	5.42

1.75				
Conv. Total (cfs) 547.3	31888.6	Conv. (cfs)	1385.0	29956.3
Length Wtd. (ft) 9.10	43.57	Wetted Per. (ft)	30.87	44.24
Min Ch El (ft)	847 - 00	Shear (lb/sq ft)	0.19	0.74
0.23 Alpha 0.00	1.29	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft)	0.16	Cum Volume (acre-ft)	0.44	2.54
0.74 C & E Loss (ft) 0.43	0.07	Cum SA (acres)	0.30	0.58
U.43				

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	854.60	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.61	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 47.00	853.99	Reach Len. (ft)	35.00	44.00
Crit W.S. (ft) 19.08		Flow Area (sq ft)	58.07	253.98
E.G. Slope (ft/ft) 19.08	0.002293	Area (sq ft)	58.07	253.98
Q Total (cfs) 37.08	1796.00	Flow (cfs)	103.32	1655.60
Top Width (ft)	88.44	Top Width (ft)	35.87	43.00
vel Total (ft/s) 1.94	5.42	Avg. Vel. (ft/s)	1.78	6.52
Max Chl Dpth (ft)	6.99	Hydr. Depth (ft)	1.62	5.91
Conv. Total (cfs) 774.4	37504.4	Conv. (cfs)	2157.5	34572.6
Length Wtd. (ft) 10.37	43.47	Wetted Per. (ft)	36.00	44.24
Min Ch El (ft) 0.26	847.00	Shear (lb/sq ft)	0.23	0.82
Alpha 0.00	1.34	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft) 0.86	0.17	Cum Volume (acre-ft)	0.54	2.71
C & E Loss (ft) 0.45	0.09	Cum SA (acres)	0.34	0.58

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

#### CROSS SECTION

•					
RIVER: Bluestone Creek REACH: 1	RS: 1100		·		
INPUT Description: X-1100 Station Elevation Data Sta Elev Sta 0 857 53 118 847 127 158 856 171	Elev 856 848	12 Sta Ele 67 85 140 84	4 92	Elev Sta 852 113 849 148	Elev 850 850
Manning's n Values Sta n Val Sta 0 .055 113		3 Sta n Va 148 .05			-
Bank Sta: Left Right 113 148	Lengths:	Left Channel 80 58		Coeff Contr.	Expan.
CROSS SECTION OUTPUT Pr	ofile #2 Ye	ear			
E.G. Elev (ft)	851.18	Element		Left OB	Channel
Right OB Vel Head (ft)	0.31	Wt. n-val	•	0.055	0.035
0.055 W.S. Elev (ft) 55.00	850.87	Reach Len	, (ft)	80.00	58.00
Crit W.S. (ft) 0.63		Flow Area	(sq ft)	4.00	92.54
E.G. Slope (ft/ft) 0.63	0.003193	Area (sq	ft)	4.00	92.54
Q Total (cfs) 0.50	419.00	Flow (cfs	)	3.50	415.00
Top Width (ft) 1.45	45.61	Top Width	(ft)	9.16	35.00
Vel Total (ft/s)	4.31	Avg. Vel.	(ft/s)	0.88	4.48
0.79 Max Chl Dpth (ft)	3.87	Hydr. Dep	th (ft)	0.44	2.64
0.44 Conv. Total (cfs)	7414.7	Conv. (cf:	s)	61.9	7343.9
8.9 Length Wtd. (ft)	58.09	Wetted Pe	r. (ft)	9.20	36.21
1.70 Min Ch El (ft)	847.00	Shear (1b,	/sq ft)	0.09	0.51
0.07 Alpha	1.07	Stream Pow	wer (lb/ft s	171.00	0.00
0.00 Frctn Loss (ft)	0.11	Cum Volume	e (acre-ft)	0.05	1.22
0.15 C & E Loss (ft) 0.14	0.04	Cum SA (ac	cres)	0.07	0.50

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	852.58	Element	Left OB	<b>Channel</b>
Right OB Vel Head (ft) 0.055	0.74	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 55.00	851.84	Reach Len. (ft)	80.00	58.00
Crit W.S. (ft) 2.82		Flow Area (sq ft)	17.76	126.38
E.G. Slope (ft/ft) 2.82	0.005204	Area (sq ft)	17.76	126.38
Q Total (cfs) 4.69	928.00	Flow (cfs)	32.64	890.67
Top Width (ft) 3.07	57.38	Top Width (ft)	19.31	35.00
vel Total (ft/s) 1.66	6.31	Avg. Vel. (ft/s)	1.84	7.05
Max Chl Dpth (ft) 0.92	4.84	Hydr. Depth (ft)	0.92	3.61
Conv. Total (cfs) 65.0	12863.6	Conv. (cfs)	452.5	12346.1
Length Wtd. (ft)	58.40	wetted Per. (ft)	19.40	36.21
Min Ch El (ft) 0.26	847.00	Shear (1b/sq ft)	0.30	1.13
Alpha 0.00	1.20	Stream Power (lb/ft s)	171.00	0.00
Frctn Loss (ft) 0.40	0.22	Cum Volume (acre-ft)	0.21	1.89
C & E Loss (ft) 0.30	0.07	Cum SA (acres)	0.19	0.54

## CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	853.29	Element	Left OB	Channel
Right OB Vel Head (ft)	1.02	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.27	Reach Len. (ft)	80.00	58.00
55.00 Crit W.S. (ft)	851.70	Flow Area (sq ft)	27.12	141.44
4.29 E.G. Slope (ft/ft)	0.006255	Area (sq ft)	27.12	141.44
4.29 Q Total (cfs)	1249.00	Flow (cfs)	62.03	1177.96
9.01 Top Width (ft)	63.15	Top Width (ft)	24.37	35.00
3.78 Vel Total (ft/s)	7.23	Avg. Vel. (ft/s)	2.29	8.33
2.10 Max Chl Dpth (ft)	5.27	Hydr. Depth (ft)	1.11	4.04
1.13 Conv. Total (cfs)	15792.3	Conv. (cfs)	784.4	14894.0
113.9 Length Wtd. (ft)	58.60	Wetted Per. (ft)	24.48	36.21
4.41 Min Ch El (ft)	847.00	Shear (1b/sq ft)	0.43	1.53
0.38 Alpha	1.26	Stream Power (lb/ft s) Page 17	171.00	0.00

#### Temp Bridge.rep.txt 0.00 0.28 Cum Volume (acre-ft) 0.32 2.17 Frctn Loss (ft) 0.61C & E Loss (ft) 0.07 Cum SA (acres) 0.24 0.54 0.40 CROSS SECTION OUTPUT Profile #50 Year Left OB Channe₁ E.G. Elev (ft) 853.81 Element Right OB Vel Head (ft) 1.25 Wt. n-Val. 0.055 0.035 0.055 W.S. Elev (ft) 852.56 Reach Len. (ft) 80.00 58.00 55.00 Flow Area (sq ft) 34.76 151.66 852.17 Crit W.S. (ft) 5.47 E.G. Slope (ft/ft) 5.47 Area (sq ft) 34.76 151.66 0.007080 91.00 1407.77 1512.00 Flow (cfs) Q Total (cfs) 13.23 Top width (ft) 4.27 67.29 Top Width (ft) 28.02 35.00 Vel Total (ft/s) 7.88 Avg. Vel. (ft/s) 2.62 9.28 2.42 5.56 Hydr. Depth (ft) 1.24 4.33 Max Chl Dpth (ft) 1.28 16730.5 Conv. Total (cfs) 17969.2 Conv. (cfs) 1081.4 157.3 58.75 wetted Per. (ft) 28.14 36.21 Length Wtd. (ft) 4.98 Min Ch El (ft) 0.55 1.85 847.00 Shear (1b/sq ft) 0.49 1.30 Stream Power (lb/ft s) 171.00 0.00 Alpha 0.00 0.34 Cum Volume (acre-ft) 0.41 2.34 Frctn Loss (ft) 0.73 C & E Loss (ft) 0.07 Cum SA (acres) 0.28 0.54 0.42 CROSS SECTION OUTPUT Profile #100 Year 854.34 Element Left OB Channel E.G. Elev (ft) Right OB 0.035 vel Head (ft) 1.52 Wt. n-Val. 0.055 0.055 W.S. Elev (ft) 55.00 Reach Len. (ft) 80.00 58.00 852.83 Crit W.S. (ft) Flow Area (sq ft) 42.62 160.92 852.61 6.66 0.007999 42.62 160.92 E.G. Slope (ft/ft) Area (sq ft) 6.66 1796.00 Flow (cfs) 126.07 1651.65 Q Total (cfs) 18.28

Page 18

Top Width (ft)

Avg. Vel. (ft/s)

31.33

2.96

35.00

10.26

71.04

8.54

Top Width (ft)

**Vel Total (ft/s)** 

4.71

2.75

•	Tem	p Bridge.rep.txt		
Max Chl Dpth (ft) 1.41	5.83	Hydr. Depth (ft)	1.36	4.60
Conv. Total (cfs) 204.4	20081.7	Conv. (cfs)	1409.7	18467.7
Length wtd. (ft) 5.49	58.89	Wetted Per. (ft)	31.46	36.21
Min Ch El (ft) 0.61	847.00	Shear (lb/sq ft)	0.68	2.22
Alpha 0.00	1.34	Stream Power (1b/ft s	3) 171.00	0.00
Frctn Loss (ft) 0.85	0.40	Cum Volume (acre-ft)	0.50	2.50
C & E Loss (ft) 0.44	0.06	Cum SA (acres)	0.31	0.54
CROSS SECTION				
RIVER: Bluestone Creek REACH: 1	RS: 1000			
INPUT Description: X-1000 Station Elevation Data Sta Elev Sta 0 857 9 62 847 91	num≕ Elev 856 847	10 Sta Elev Sta 17 855 35 95 850 111	Elev Sta 853 60 853 125	Elev 851 863
Manning's n Values Sta n Val Sta O :055 60	num= n Val .035	3 Sta n Val 95 .055		
Bank Sta: Left Right 60 95	Lengths: L	eft Channel Right 25 69 95	Coeff Contr.	Expan.
CROSS SECTION OUTPUT Pro	file #2 Yea	r		
E.G. Elev (ft) Right OB	851.03	Element	Left OB	Channel
Vel Head (ft) 0.055	0.17	Wt. n-Val.		0.035
W.S. Elev (ft) 95.00	850.86	Reach Len. (ft)	25.00	69.00
Crit W.S. (ft)		Flow Area (sq ft)		124.97
1.95 E.G. Slope (ft/ft)	0.001283	Area (sq ft)		124.97
1.95 Q Total (cfs)	419.00	Flow (cfs)		417.94
1.06 Top Width (ft) 4.57	39.49	Top Width (ft)		34.93
Vel Total (ft/s)	3.30	Avg. Vel. (ft/s)		3.34
0.54 Max Chl Dpth (ft)	3.86	Hydr. Depth (ft)		3.58
0.43 Conv. Total (cfs)	11698.8	Conv. (cfs)		11669.2
29.6 Length Wtd. (ft)	68.07	Wetted Per. (ft)		38.31
4.65 Min Ch El (ft)	847.00	Shear (lb/sq ft) Page 19		0.26

### Temp Bridge.rep.txt 0.03 Alpha 0.00 Stream Power (1b/ft s) 1.02 125.00 0.00 Frctn Loss (ft) 0.09 Cum Volume (acre-ft) 0.04 1.08 0.15 C & E Loss (ft) 0.13 0.00 Cum SA (acres) 0.06 0.46 CROSS SECTION OUTPUT Profile #10 Year E.G. Elev (ft) Right OB Vel Head (ft) 0.055 852.29 **Element** Left OB Channel 0.52 0.035 wt. n-val. 0.055

W.S. Elev (ft) 851.78 Reach Len. (ft)	35 00	
95.00	25.00	69.00
Crit W.S. (ft) Flow Area (sq ft)	3.76	157.14
8.41 E.G. Slope (ft/ft) 0.002875 Area (sq ft) 8.41	3.76	157.14
Q Total (cfs) 928.00 Flow (cfs) 11.12	2.89	913.99
Top width (ft) 54.16 Top width (ft) 9.47	9.69	35.00
Vel Total (ft/s) 5.48 Avg. Vel. (ft/s)	0.77	5.82
1.32 Max Chl Dpth (ft) 4.78 Hydr. Depth (ft) 0.89	0.39	4.49
Conv. Total (cfs) 17307.7 Conv. (cfs) 207.3	53.9	17046.5
Length Wtd. (ft) 67.65 Wetted Per. (ft) 9.63	9.72	38.47
Min Ch El (ft) 847.00 Shear (lb/sq ft)	0.07	0.73
0.16 Alpha 1.11 Stream Power (lb/ft s) 0.00	125.00	0.00
Frctn Loss (ft) 0.20 Cum Volume (acre-ft) 0.39	0.19	1.70
C & E Loss (ft) 0.01 Cum SA (acres) 0.30	0.16	0.49

#### CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	852.93	Element	Left OB	Channel
Right OB Vel Head (ft)	0.77	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.16	Reach Len. (ft)	25.00	69.00
95.00 Crit W.S. (ft)		Flow Area (sq ft)	8.38	170.54
12.42 E.G. Slope (ft/ft)	0.003883	Area (sq ft)	8.38	170.54
12.42 Q Total (cfs)	1249.00	Flow (cfs)	9.78	1217.47
21.75 Top_Width (ft)	60.99	Top Width (ft)	14.48	35.00
11.51		Page 20		

•				•
Vel_Total (ft/s)	Те <b>т</b> р 6.53	Bridge.rep.txt Avg. Vel. (ft/s)	1.17	7.14
1.75 Max Chi Dpth (ft)	5.16	Hydr. Depth (ft)	0.58	4.87
1.08 Conv. Total (cfs)	20042.7	Conv. (cfs)	157.0	19536.7
349.0 Length Wtd. (ft)	67.48	Wetted Per. (ft)	14.52	38.47
11.71 Min Ch El (ft)	847.00	Shear (1b/sq ft)	0.14	1.07
0.26 Alpha	1.17	Stream Power (lb/ft s)	125.00	0.00
0.00 Frctn Loss (ft)	0.27	Cum Volume (acre-ft)	0.29	1.96
0.59 C & E Loss (ft) 0.39	0.02	Cum SA (acres)	0.21	0.49
CROSS SECTION OUTPUT	Profile #50 Yea	ır		
E.G. Elev (ft)	853.40	Element	Left OB	Channel
Right OB Vel Head (ft)	1.01	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.40	Reach Len. (ft)	25.00	69.00
95.00 Crit W.S. (ft)		Flow Area (sq ft)	12.18	178.86
15.31 E.G. Slope (ft/ft)	0.004780	Area (sq ft)	12.18	178.86
15.31 Q Total (cfs)	1512.00	Flow (cfs)	17.86	1462.26
31.88 Top Width (ft)	65.23	Top Width (ft)	17.45	35.00
12.78 Vel Total (ft/s)	7.33	Avg. Vel. (ft/s)	1.47	8.18
2.08 Max Chl Dpth (ft)	5.40	Hydr. Depth (ft)	0.70	5.11
1.20 Conv. Total (cfs)	21870.6	Conv. (cfs)	258.3	21151.1
461.1 Length Wtd. (ft)	67.37	Wetted Per. (ft)	17.50	38.47
13.00 Min Ch El (ft) 0.35	847.00	Shear (lb/sq ft)	0.21	1.39
0.33 Alpha 0.00	1.21	Stream Power (1b/ft s)	125.00	0.00
Frctn Loss (ft)	0.33	Cum Volume (acre-ft)	0.37	2.12
0.72 C & E Loss (ft) 0.41	0.03	Cum SA (acres)	0.24	0.50
CROSS SECTION OUTPUT	Profile #100 Ye	ar		
E.G. Elev (ft)	853.87	Element	Left OB	Channel
Right OB Vel Head (ft)	1.30	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.57	Reach Len. (ft) Page 21	25.00	69.00

	•			
	Te	mp Bridge.rep.txt		,
95.00 Crit w.s. (ft)	851.76	Flow Area (sq ft)	15.43	184.99
17.63 E.G. Slope (ft/ft)	0.005949	Area (sq ft)	15.43	184.99
17.63 Q Total (cfs)	1796.00	Flow (cfs)	27.31	1725.75
42.94 Top width (ft)	68.35	Top width (ft)	19.64	35.00
13.71 Vel Total (ft/s)	8.24	Avg. Vel. (ft/s)	1.77	9.33
2.44 Max Chl Dpth (ft)	5.57	Hydr. Depth (ft)	0.79	5.29
1.29 Conv. Total (cfs)	23285.0	Conv. (cfs)	354.1	22374.2
556.7 Length Wtd. (ft)	67.31	Wetted Per. (ft)	19.70	38.47
13.95 Min Ch El (ft)	847.00	Shear (lb/sq ft)	0.29	1.79
0.47 Alpha	1.24	Stream Power (lb/ft s)	125.00	0.00
0.00 Frctn Loss (ft)	0.42	Cum Volume (acre-ft)	0.45	2.27
0.83 C & E Loss (ft) 0.43	0.03	Cum SA (acres)	0.26	0.50
CROSS SECTION				
RIVER: Bluestone Creek REACH: 1	RS: 900			
INPUT Description: X-900 Station Elevation Data Sta Elev Sta 0 855 19 71 849 80 148 854 157	num= Elev 854 846.2 860	12 Sta Elev Sta 29 854 52 87 846.2 100	Elev Sta 850 70 849 128	Elev 849 852
Manning's n Values Sta n Val Sta 0 .055 70	num= n Val .035	3 Sta n Val 100 .055		
Bank Sta: Left Right 70 100	Lengths:	Left Channel Right 0 20 34 75	Coeff Contr. .1	Expan.
CROSS SECTION OUTPUT Pro	file #2 Ye	ar		
E.G. Elev (ft) Right OB	850.93	Element	Left OB	Channel
vel Head (ft)	0.19	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	850.74	Reach Len. (ft)	2.00	2.00
2.00 Crit W.S. (ft)	849.14	Flow Area (sq ft)	23.85	102.55
14.10 E.G. Slope (ft/ft)	0.001521	Area (sq ft)	23.85	102.55
14.10 Q Total (cfs)	419.00	Flow (cfs)	26.26	379.26

Flow (cfs) Page 22

Temp Bridge.rep.txt 68.47 Top Width (ft) 22.24 30.00 2.98 Avg. Vel. (ft/s) 1.10 3.70 Hydr. Depth (ft) 4.54 1.07 3.42 10742.3 Conv. (cfs) 673.4 9723.3 2.00 Wetted Per. (ft) 22.34 30.72

Min Ch El (ft) 0.08 846.20 Shear (1b/sq ft) 0.10 0.32 Stream Power (1b/ft s) Alpha 1.40 157.00 0.00 0.00 0.01 Cum Volume (acre-ft) 0.03 0.90 Frctn Loss (ft) 0.13 0.04 Cum SA (acres) C & E Loss (ft) 0.05 0.41

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

#### CROSS SECTION OUTPUT Profile #10 Year

13.48

16.22

0.96

0.87

16.32

0.11

Top Width (ft)

Vel Total (ft/s)

Max Chl Dpth (ft)

Conv. Total (cfs) 345.6

Length Wtd. (ft)

E.G. Elev (ft)	852.09	Element	Left OB	Channel
Right OB Vel Head (ft)	0.49	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.59	Reach Len. (ft)	2.00	2.00
2.00 Crit W.S. (ft)	850.51	Flow Area (sq ft)	45.01	128.24
31.42 E.G. Slope (ft/ft) 31.42	0.003046	Area (sq ft)	45.01	128.24
Q Total (cfs)	928.00	Flow (cfs)	93.59	778.90
55.51 Top Width (ft) 24.22	81.39	Top Width (ft)	27.17	30.00
Vel Total (ft/s)	4.53	Avg. Vel. (ft/s)	2.08	6.07
1.77 Max Chl Dpth (ft)	5.39	Hydr. Depth (ft)	1.66	4.27
1.30 Conv. Total (cfs) 1005.8	16815.3	Conv. (cfs)	1695.9	14113.7
Length Wtd. (ft)	2.00	Wetted Per. (ft)	27.33	30.72
24.35 Min Ch El (ft)	846.20	Shear (1b/sq ft)	0.31	0.79
0.25 Alpha	1.54	Stream Power (lb/ft s)	157.00	0.00
0.00 Frctn Loss (ft)	0.01	Cum Volume (acre-ft)	0.17	1.48
0.35 C & E Loss (ft) 0.26	0.04	Cum SA (acres)	0.15	0.44

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) Page 23

Temp Bridge.rep.txt is less than 0.7 or greater than 1.4.
This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	852.64	Element	Left OB	Channel
Right OB Vel Head (ft)	0.70	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.94	Reach Len. (ft)	2.00	2.00
2.00 Crit W.S. (ft)	851.10	Flow Area (sq ft)	54.86	138.72
40.45 E.G. Slope (ft/ft) 40.45	0.004001	Area (sq ft)	54.86	138.72
Q Total (cfs) 89.11	1249.00	Flow (cfs)	142.18	1017.71
Top Width (ft) 27.48	86.66	Top Width (ft)	29.18	30.00
Vel Total (ft/s) 2.20	5.34	Avg. Vel. (ft/s)	2.59	7.34
Max Chl Dpth (ft) 1.47	5.74	Hydr. Depth (ft)	1.88	4.62
Conv. Total (cfs) 1408.7	19744.8	Conv. (cfs)	2247.6	16088.5
Length Wtd. (ft) 27.63	2.00	Wetted Per. (ft)	29.37	30.72
Min Ch El (ft) 0.37	846.20	Shear (1b/sq ft)	0.47	1.13
Alpha 0.00	1.58	Stream Power (lb/ft s)	157.00	0.00
Frctn Loss (ft)	0.02	Cum Volume (acre-ft)	0.27	1.72
C & E Loss (ft) 0.35	0.03	Cum SA (acres)	0.20	0.44

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	853.04	Element	Left OB	Channel
Right OB Vel Head (ft)	0.90	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.15	Reach Len. (ft)	2.00	2.00
2.00 Crit W.S. (ft)	851.50	Flow Area (sq ft)	60.85	144.76
46.17 E.G. Slope (ft/ft)	0.004922	Area (sq ft)	60.85	144.76
46.17 Q Total (cfs)	1512.00	Flow (cfs)	182.57	1211.76
117.66 Top Width (ft)	89.79	Top Width (ft)	30.34	30.00
29.45 vel_Total (ft/s)	6.01	Avg. Vel. (ft/s)	3.00	8.37
2.55 Max Chl Dpth (ft)	5.95	Hydr. Depth (ft) Page 24	2.01	4.83

1.57 Conv. Total (cfs)	21552.2	Conv. (cfs)	2602.4	17272.6
1677.2 Length Wtd. (ft)	2.00	Wetted Per. (ft)	30.55	30.72
29.62 Min Ch El (ft)	846.20	Shear (lb/sq ft)	0.61	1.45
0.48 Alpha	1.60	Stream Power (1b/ft s)	157.00	0.00
0.00 Freth Loss (ft)	0.02	Cum Volume (acre-ft)	0.35	1.87
0.65 C & E Loss (ft) 0.37	0.02	Cum SA (acres)	0.22	0.44
U. 31				

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	853.42	Element	Left OB	Channe1
Right OB Vel Head (ft)	1.21	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	852.21	Reach Len. (ft)	2.00	2.00
2.00 Crit W.S. (ft)	851.88	Flow Area (sq ft)	62.94	146.82
48.22 E.G. Slope (ft/ft)	0.006552	Area (sq ft)	62.94	146.82
48.22 Q Total (cfs)	1796.00	Flow (cfs)	220.94	1431.36
143.69 Top Width (ft)	90.87	Top Width (ft)	30.73	30.00
30.14 Vel Total (ft/s)	6.96	Avg. Vel. (ft/s)	3.51	9.75
2.98 Max Chl Dpth (ft)	6.01	Hydr. Depth (ft)	2.05	4.89
1.60 Conv. Total (cfs)	22188.8	Conv. (cfs)	2729.7	17683.8
1775.3 Length Wtd. (ft)	2.00	Wetted Per. (ft)	30.95	30.72
30.31 Min Ch El (ft)	846.20	Shear (lb/sq ft)	0.83	1.95
0.65 Alpha	1.61	Stream Power (lb/ft s)	157.00	0.00
0.00 Fretn Loss (ft)	0.02	Cum Volume (acre-ft)	0.42	2.00
0.76 C & E Loss (ft) 0.38	0.00	Cum SA (acres)	0.25	0.45

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

BRIDGE

```
Temp Bridge.rep.txt
```

```
RIVER: Bluestone Creek
 RS: 810
REACH: 1
INPUT
Description: New Crossing
Distance from Upstream XS
Deck/Roadway Width
Weir Coefficient
 13.5
 2.6
Upstream Deck/Roadway Coordinates
 num=
 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord
 847.25
 0
 852
 60
 849
 0
 75
 849
 110
 849
 200
 216
 847.25
 850.5
 0
 852
 233
 854
 0
 245
 856
Upstream Bridge Cross Section Data
Station Elevation Data
 12
 num=
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Sta
 Elev
 Sta
 Elev
 19
 0
 855
 854
 29
 854
 52
 850
 70
 849
 71
 849
 80
 846.2
 87
 846.2
 100
 849
 128
 852
 148
 854
 157
 860
Manning's n Values
 num=
 Sta
 n Val
 Sta
 n Val
 Sta
 n Val
 .055
 70
 .035
 100
 .055
Bank Sta: Left
 Right
 Coeff Contr.
 Expan.
 70
 100
Downstream
 Deck/Roadway Coordinates
 8
 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord
 Sta Hi Cord Lo Cord
 852
 847.25
 0
 60
 849
 0
 75
 849
 0
 110
 849
 847.25
 200
 0
 216
 850.5
 852
 233
 854
 245
 856
Downstream Bridge Cross Section Data
Station Elevation Data
 num=
 13
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 Sta
 Elev
 854
 0
 19
 852
 39
 850
 848
 80
 847
 63
 89
 846
 97
 846
 107
 848
 163
 850
 188
 851
 216
 856
 233
 858
 245
 859
Manning's n Values
 num=
 n Val
 Sta
 n Val
 Sta
 Sta
 n Val
 .055
 63
 .035
 107
 .055
Bank Sta: Left
 Right
107
 Coeff Contr.
 Expan.
 63
 . 3
Upstream Embankment side slope
 =
 4 horiz. to 1.0 vertical
Downstream Embankment side slope
 6 horiz. to 1.0 vertical
Maximum allowable submergence for weir flow Elevation at which weir flow begins
 98
 849
Energy head used in spillway design
Spillway height used in design
weir crest shape
 = Broad Crested
Number of Bridge Coefficient Sets = 1
Low Flow Methods and Data
 Energy
Selected Low Flow Methods = Highest Energy Answer
 Page 26
```

High Flow Method Energy Only

Additional Bridge Parameters

Add Friction component to Momentum

Do not add Weight component to Momentum

Class B flow critical depth computations use critical depth inside the bridge at the upstream end

Criteria to check for pressure flow = Upstream energy grade line

#### BRIDGE OUTPUT Profile #2 Year

E.G. US. (ft) Inside BR DS	850.93	Element	Inside BR US
W.S. US. (ft)	850.74	E.G. Elev (ft)	850.88
850.23 Q Total (cfs) 849.85	419.00	W.S. Elev (ft)	850.30
Q Bridge (cfs)	40.30	Crit W.S. (ft)	850.30
849.85 Q Weir (cfs) 3.85		Max Chl Dpth (ft)	4.10
Weir Sta Lft (ft)		Vel Total (ft/s)	5.74
4.54 Weir Sta Rgt (ft)		Flow Area (sq ft)	73.01
92.25 Weir Submerg		Froude # Chl	0.54
0.45 Weir Max Depth (ft)		Specif Force (cu ft)	154.65
155.09 Min El Weir Flow (ft)	849.01	Hydr Depth (ft)	1.18
0.80 Min El Prs (ft)	847.25	W.P. Total (ft)	92.70
170.91 Delta EG (ft)	0.99	Conv. Total (cfs)	2379.8
2298.1 Delta WS (ft)	0.91	Top Width (ft)	61.80
115.69 BR Open Area (sq ft)	11.68	Frctn Loss (ft)	0.43
0.06 BR Open Vel (ft/s)	3.45	C & E Loss (ft)	0.06
0.08 Coef of Q		Shear Total (lb/sq ft)	1.52
1.12 Br Sel Method 0.00	Energy only	Power Total (lb/ft s)	0.00

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a ocritical answer. The program defaulted to critical depth. valid subcritical answer.

Multiple critical depths were found at this location. The critical depth Note: with the lowest, valid, water surface was used.
Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

with the lowest, valid, water surface was used.

#### BRIDGE OUTPUT Profile #10 Year

E.G. US. (ft) Inside BR DS	852.09	Element	Inside BR US
W.S. US. (ft)	851.59	E.G. Elev (ft)	852.03
851.53 Q Total (cfs) 851.39	928.00	W.S. Elev (ft)	851.16
Q Bridge (cfs)	36.67	Crit W.S. (ft)	851.16
850.41 Q Weir (cfs) 5.39		Max Chl Dpth (ft)	4.96
Weir Sta Lft (ft)		Vel Total (ft/s)	7.04
2.95 Weir Sta Rgt (ft)		Flow Area (sq ft)	131.82
314.34 Weir Submerg		Froude # Chl	0.59
0.23 Weir Max Depth (ft)		Specif Force (cu ft)	375.97
481.94 Min El Weir Flow (ft)	849.01	Hydr Depth (ft)	1.76
1.90 Min El Prs (ft)	847.25	W.P. Total (ft)	105.81
220.36 Delta EG (ft)	0.59	Conv. Total (cfs)	5510.8
13110.7 Delta WS (ft)	0.23	Top Width (ft)	74.79
165.02 BR Open Area (sq ft)	11.68	Frctn Loss (ft)	0.13
0.03 BR Open Vel (ft/s)	3.14	C & E Loss (ft)	0.22
0.00 Coef of Q		Shear Total (lb/sq ft)	2.21
0.45 Br Sel Method 0.00	Energy only	Power Total (lb/ft s)	0.00

Warning: The energy equation could not be balanced within the specified number of

iterations. The program used critical depth
for the water surface and continued on with the calculations.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may

indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance)

is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a Page 28

critical answer. The program defaulted to critical depth. valid subcritical answer.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used. warning: The conveyance ratio (upstream conveyance divided by downstream conveyance)

is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

#### BRIDGE OUTPUT Profile #25 Year

E.G. US. (ft) Inside BR DS	852.64	Element	Inside BR US
W.S. US. (ft) 852.09	851.94	E.G. Elev (ft)	852.60
Q Total (cfs) 851.94	1249.00	W.S. Elev (ft)	851.58
Q Bridge (cfs) 850.68	35.69	Crit W.S. (ft)	851.58
Q Weir (cfs) 5.94		Max Chl Dpth (ft)	5.38
Weir Sta Lft (ft)		<pre>Vel Total (ft/s)</pre>	7.58
3.07 Weir Sta Rgt (ft) 407.43		Flow Area (sq ft)	164.68
Weir Submerg		Froude # Chl	0.61
Weir Max Depth (ft)		Specif Force (cu ft)	533.84
714.06 Min El Weir Flow (ft)	849.01	Hydr Depth (ft)	2.03
2.35 Min El Prs (ft)	847.25	W.P. Total (ft)	112.22
229.01 Delta EG (ft)	0.59	Conv. Total (cfs)	7540.2
19401.4 Delta WS (ft)	0.05	Top Width (ft)	81.15
173.59 BR Open Area (sq ft)	11.68	Frctn Loss (ft)	0.12
0.03 BR Open Vel (ft/s)	3.05	C & E Loss (ft)	0.26
0.00 Coef of Q		Shear Total (lb/sq ft)	2.51
0.46 Br Sel Method 0.00	Energy only	Power Total (lb/ft s)	0.00

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than  $0.5~\rm{ft}~(0.15~\rm{m})$ . This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.
Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

#### BRIDGE OUTPUT Profile #50 Year

E.G. US. (ft)	853.04	Element	Inside BR US
Inside BR DS W.S. US. (ft)	852.15	E.G. Elev (ft)	853.00
852.51 Q Total (cfs) 852.35	1512.00	W.S. Elev (ft)	851.88
Q Bridge (cfs) 850.88	35.27	Crit W.S. (ft)	851.88
Q Weir (cfs) 6.35		Max Chl Dpth (ft)	5.68
Weir Sta Lft (ft) 3.15		Vel Total (ft/s)	7.97
Weir Sta Rgt (ft) 480.60		Flow Area (sq ft)	189.68
Weir Submerg 0.23		Froude # Chl	0.63
Weir Max Depth (ft) 926.78		Specif Force (cu ft)	670.75
Min El Weir Flow (ft) 2.67	849.01	Hydr Depth (ft)	2.21
Min El Prs (ft) 235.35	847.25	W.P. Total (ft)	116.79
Delta EG (ft) 24896.6	0.56	Conv. Total (cfs)	9190.9
Delta WS (ft) 179.88	-0.15	Top Width (ft)	85.67
BR Open Area (sq ft)	11.68	Frctn Loss (ft)	0.11
BR Open Vel (ft/s) 0.00	3.02	C & E Loss (ft)	0.29
Coef of Q 0.47		Shear Total (lb/sq ft)	2.74
Br Sel Method 0.00	Energy only	Power Total (lb/ft s)	0.00

Warning: The energy equation could not be balanced within the specified number of

iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may

indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

#### BRIDGE OUTPUT Profile #100 Year

E.G. US. (ft)	853.42	Element	Inside BR US
Inside BR DS W.S. US. (ft)	852.21	E.G. Elev (ft)	853.40
852.92	032.21	E.G. Liev (it)	655.40
Q Total (cfs)	1796.00	W.S. Elev (ft)	852.20
852.75 Q Bridge (cfs)	34.50	Crit W.S. (ft)	852.20
851.08	34.30	Cric w.s. (it)	032.20
Q Weir (cfs)		Max Chl Dpth (ft)	6.00
6.75		V-11 (£- (-)	0.25
Weir Sta Lft (ft) 3.24		Vel Total (ft/s)	8.25
Weir Sta Rgt (ft)		Flow Area (sq ft)	217.61
554.46			
Weir Submerg		Froude # Chl	0.63
0.22 Weir Max Depth (ft)		Specif Force (cu ft)	825.47
1168.86		Specific (cu fe)	023.47
Min El Weir Flow (ft)	849.01	Hydr Depth (ft)	2.40
2.98	947 25	W.B. Total (ft)	121 74
Min El Prs (ft) 241.51	847.25	W.P. Total (ft)	121.74
Delta EG (ft)	0.54	Conv. Total (cfs)	11125.4
30869.8		• •	
Delta WS (ft) 185.97	-0.47	Top Width (ft)	90.58
BR Open Area (sq ft)	11.68	Frctn Loss (ft)	0.10
0.03			
BR Open Vel (ft/s)	2.95	C & E Loss (ft)	0.31
0.00 Coef of Q		Shear Total (lb/sq ft)	2 01
0.49		Shear rotal (10/54 1t)	2.91
Br Sel Method	Energy only	Power Total (lb/ft s)	0.00
0.00	<del>-</del> -	•	

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than  $0.5\ \text{ft}\ (0.15\ \text{m})$ . This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program

defaulted to critical depth. Note: Multiple critical depths were found at this location. The critical depth

with the lowest, valid, water surface was used.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

Temp Bridge.rep.txt
This may indicate the need for additional cross sections.
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.

#### **CROSS SECTION**

RIVER: Bluestone Creek REACH: 1	RS: 800	
------------------------------------	---------	--

REACH:	1	CIEEK	RS: 800				e		
INPUT Descrip Station Sta ( 89 21	9 854 9 846	n Data Sta 19 97	num= Elev 852 846 858	13 Sta 39 107 245	Elev 850 848 859	Sta 63 163	Elev 848 850	Sta 80 188	Elev 847 851
Manning Sta		es Sta 63	num= n Val .035	3 Sta 107	n Val .055		·		
Bank Sta	a: Left 63	Right 107	Lengths:	Left Cl 90	hannel 48	Right 15	Coeff	Contr. .1	Expan.
CROSS SI	ECTION OU	TPUT Pro	ofile #2 Ye	ar					
E.G. I	lev (ft)		849.94	Elei	nent		Let	ft OB	Channe ¹

E.G. Elev (ft)	849.94	Element	Left OB	Channel
Right OB Vel Head (ft)	0.11	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	849.83	Reach Len. (ft)	90.00	48.00
15.00 Crit W.S. (ft)		Flow Area (sq ft)	20.13	128.59
46.96 E.G. Slope (ft/ft)	0.001068	Area (sq ft)	20.13	128.59
46.96 Q Total (cfs)	419.00	Flow (cfs)	16.72	363.19
39.09 Top Width (ft)	117.26	Top width (ft)	21.98	44.00
51.28 Vel Total (ft/s)	2.14	Avg. Vel. (ft/s)	0.83	2.82
0.83 Max Chl Dpth (ft)	3.83	Hydr. Depth (ft)	0.92	2.92
0.92 Conv. Total (cfs)	12818.5	Conv. (cfs)	511.6	11111.1
1195.9 Length Wtd. (ft)	47.30	Wetted Per. (ft)	22.05	44.28
51.31 Min Ch El (ft)	846.00	Shear (1b/sq ft)	0.06	0.19
0.06 Alpha	1.53	Stream Power (lb/ft s)	245.00	0.00
0.00 Frctn Loss (ft)	0.07	Cum Volume (acre-ft)	0.02	0.84
0.11 C & E Loss (ft) 0.08	0.01	Cum SA (acres)	0.03	0.37

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

Temp Bridge.rep.txt
This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	851.50	Element	Left OB	Channel
Right OB Vel Head (ft)	0.13	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.36	Reach Len. (ft)	90.00	48.00
15.00 Crit W.S. (ft)		Flow Area (sq ft)	65.93	195.89
154.12 E.G. Slope (ft/ft)	0.000880	Area (sq ft)	65.93	195.89
154.12 Q Total (cfs)	928.00	Flow (cfs)	76.63	664.91
186.46	320.00	11011 (613)	70.03	007.51
Top Width (ft) 83.02	164.63	Top Width (ft)	37.61	44.00
Vel Total (ft/s)	2.23	Avg. Vel. (ft/s)	1.16	3.39
1.21 Max Chl Dpth (ft)	5.36	Hydr. Depth (ft)	1.75	4.45
1.86		•		
Conv. Total (cfs) 6284.7	31278.3	Conv. (cfs)	2582.7	22410.9
Length Wtd. (ft)	45.41	Wetted Per. (ft)	37.76	44.28
83.11 Min Ch El (ft)	846.00	Shear (1b/sq ft)	0.10	0.24
0.10 Alpha	1.74	Stream Power (1b/ft s)	245.00	0.00
0.00				
Frctn Loss (ft) 0.26	0.06	Cum Volume (acre-ft)	0.13	1.37
C & E Loss (ft) 0.21	0.03	Cum SA (acres)	0.12	0.41

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	852.06	Element	Left OB	Channel
Right OB Vel Head (ft)	0.16	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	851.89	Reach Len. (ft)	90.00	48.00
15.00 Crit W.S. (ft)		Flow Area (sq ft)	87.38	219.32
199.12 E.G. Slope (ft/ft)	0.000963	Area (sq ft)	87.38	219.32
199.12 Q Total (cfs)	1249.00	Flow (cfs)	117.34	839.73
291.93 Top Width (ft)	172.94	Top Width (ft)	42.94	44.00
86.00 Vel Total (ft/s)	2.47	Avg. Vel. (ft/s)	1.34	3.83
1.47 Max Chl Dpth (ft)	5.89	Hydr. Depth (ft)	2.04	4.98
2.32		Page 33		

	Temp	Bridge.rep.txt Conv. (cfs)		
Conv. Total (cfs)	40240.4	Conv. (cfs)	3780.6	27054.5
9405.3				
Length Wtd. (ft)	44.58	Wetted Per. (ft)	43.11	44.28
86.14				
Min Ch El (ft)	846.00	Shear (lb/sq ft)	0.12	0.30
0.14	4 50			
Alpha	1.73	Stream Power (lb/ft s)	245.00	0.00
0.00				
Fretn Loss (ft)	0.07	Cum Volume (acre-ft)	0.21	1.60
0.42				
C & E Loss (ft)	0.04	Cum SA (acres)	0.16	0.41
0.30				

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

### CROSS SECTION OUTPUT Profile #50 Year

E C Elay (ft)	052 40	Element		Channel
E.G. Elev (ft) Right OB	852.48	Element	Left OB	Channel
Vel Head (ft) 0.055	0.18	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 15.00	852.29	Reach Len. (ft)	90.00	48.00
Crit W.S. (ft) 234.04		Flow Area (sq ft)	105.36	236.95
E.G. Slope (ft/ft) 234.04	0.001003	Area (sq ft)	105.36	236.95
Q Total (cfs) 383.10	1512.00	Flow (cfs)	154.40	974.50
Top Width (ft) 88.25	179.05	Top Width (ft)	46.80	44.00
vel Total (ft/s) 1.64	2.62	Avg. Vel. (ft/s)	1.47	4.11
Max Chl Dpth (ft) 2.65	6.29	Hydr. Depth (ft)	2.25	5.39
Conv. Total (cfs) 12098.7	47750.5	Conv. (cfs)	4876.2	30775.5
Length Wtd. (ft) 88.42	44.02	Wetted Per. (ft)	46.99	44.28
Min Ch El (ft) 0.17	846.00	Shear (1b/sq ft)	0.14	0.33
0.17 Alpha 0.00	1.71	Stream Power (lb/ft s)	245.00	0.00
Frctn Loss (ft)	0.08	Cum Volume (acre-ft)	0.28	1.73
0.52 C & E Loss (ft) 0.31	0.05	Cum SA (acres)	0.19	0.41

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections. Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	852.89	Element	Left OB	Channel
Right OB Vel Head (ft)	0.20	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft) 15.00	852.68	Reach Len. (ft)	90.00	48.00
Crit W.S. (ft) 268.92		Flow Area (sq ft)	124.36	254.13
E.G. Slope (ft/ft) 268.92	0.001040	Area (sq ft)	124.36	254.13
Q Total (cfs) 483.76	1796.00	Flow (cfs)	197.00	1115.25
Top Width (ft)	184.94	Top width (ft)	50.51	44.00
Vel Total (ft/s) 1.80	2.77	Avg. Vel. (ft/s)	1.58	4.39
Max Chl Dpth (ft) 2.97	6.68	Hydr. Depth (ft)	2.46	5.78
Conv. Total (cfs) 15001.5	55694.5	Conv. (cfs)	6108.9	34584.1
Length Wtd. (ft) 90.64	43.52	wetted Per. (ft)	50.73	44.28
Min Ch El (ft) 0.19	846.00	Shear (lb/sq ft)	0.16	0.37
Alpha 0.00	1.70	Stream Power (lb/ft s)	245.00	0.00
Frctn Loss (ft) 0.60	0.08	Cum Volume (acre-ft)	0.34	1.86
C & E Loss (ft) 0.32	0.06	Cum SA (acres)	0.21	0.41

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION

RIVER: Bluestone Creek REACH: 1 RS: 700

INPUT

Description: X-700

Station E Sta 0 39	Elev 853 847	Sta 15 53	num= Elev 857 846 852	14 Sta 20 66 183	Elev 857 846 856	Sta 33 72 195	Elev 850 850 860	Sta 35 85	E16 84 85
110	850	160	852	183	856	195	860		

Manning's n Values num= Sta 33 n Val Sta n Val Sta n Val .055 .035 .055

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 67 . 1 . 3

CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	849,.86	Element	Left OB	Channel
Right OB Vel Head (ft)	0.24	Wt. n-Val.		0.035
W.S. Elev (ft)	849.62	Reach Len. (ft)	95.00	67.00
8.00 Crit W.S. (ft)		Flow Area (sq ft)	-	107.47
E.G. Slope (ft/ft)	0.002214	Area (sq ft)		107.47
Q Total (cfs)	419.00	Flow (cfs)		419.00
Top Width (ft)	37.67	Top Width (ft)		37.67
Vel Total (ft/s)	3.90	Avg. Vel. (ft/s)		3.90
Max Chl Dpth (ft)	3.62	Hydr. Depth (ft)		2.85
Conv. Total (cfs)	8904.0	Conv. (cfs)	•	8904.0
Length Wtd. (ft)	66.98	Wetted Per. (ft)		39.42
Min Ch El (ft)	846.00	Shear (lb/sq ft)	4	0.38
Alpha	1.00	Stream Power (lb/ft s)	195.00	0.00
0.00 Frctn Loss (ft)	0.18	Cum Volume (acre-ft)	0.00	0.71
0.11 C & E Loss (ft) 0.07	0.01	Cum SA (acres)	0.01	0.33

# CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	851.40	Element	Left OB	Channel
Right OB Vel Head (ft)	0.43	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	850.97	Reach Len. (ft)	95.00	67.00
8.00 Crit W.S. (ft)		Flow Area (sq ft)	0.87	159.76
48.51 E.G. Slope (ft/ft)	0.002679	Area (sq ft)	0.87	159.76
48.51 Q_Total (cfs)	928.00	Flow (cfs)	0.69	869.86
57.45 Top Width (ft)	103.00	Top Width (ft)	1.80	39.00
62.21 Vel Total (ft/s)	4.44	Avg. Vel. (ft/s)	0.79	5.44
1.18 Max_Chl Dpth (ft)	4.97	Hydr. Depth (ft)	0.48	4.10
0.78 Conv. Total (cfs)	17930.9	Conv. (cfs)	13.3	16807.5
1110.1 Length Wtd. (ft)	61.94	Wetted Per. (ft)	2.04	40.95
62.22 Min Ch El (ft)	846.00	Shear (1b/sq ft)	0.07	0.65
0.13 Alpha	1.42	Stream Power (lb/ft s)	195.00	0.00
0.00		Page 36		

Frctn Loss (ft) 0.23	0.19	Bridge.rep.txt Cum Volume (acre-ft)	0.06	1.18
C & E Loss (ft) 0.18	0.01	Cum SA (acres)	0.08	0.36

## CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	851.94	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.59	wt. n-val.	0.055	0.035
W.S. Elev (ft) 8.00	851.35	Reach Len. (ft)	95.00	67.00
Crit W.S. (ft) 74.29		Flow Area (sq ft)	1.70	174.76
E.G. Slope (ft/ft) 74.29	0.003342	Area (sq ft)	1.70	174.76
Q Total (cfs) 118.65	1249.00	Flow (cfs)	1.88	1128.48
Top Width (ft) 71.82	113.34	Top Width (ft)	2.51	39.00
vel Total (ft/s) 1.60	4.98	Avg. Vel. (ft/s)	1.11	6.46
Max Chl Dpth (ft)	5.35	Hydr. Depth (ft)	0.68	4.48
1.03 Conv. Total (cfs) 2052.3	21604.5	Conv. (cfs)	32.5	19519.7
Length Wtd. (ft)	58.29	Wetted Per. (ft)	2.85	40.95
71.85 Min Ch El (ft)	846.00	Shear (lb/sq ft)	0.12	0.89
0.22 Alpha	1.53	Stream Power (lb/ft s)	195.00	0.00
0.00 Frctn Loss (ft)	0.21	Cum Volume (acre-ft)	0.12	1.38
0.38 C & E Loss (ft) 0.27	0.01	Cum SA (acres)	0.12	0.37

## CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	852.35	Element	Left OB	Channe?
Right OB Vel Head (ft) 0.055	0.69	Wt. n-val.	0.055	0.035
W.S. Elev (ft) 8.00	851.66	Reach Len. (ft)	95.00	67.00
crit W.S. (ft) 97.16		Flow Area (sq ft)	2.54	186.56
E.G. Slope (ft/ft) 97.16	0.003710	Area (sq ft)	2.54	186.56
97.16 Q Total (cfs) 182.90	1512.00	Flow (cfs)	3.39	1325.71
Top Width (ft)	121.46	Top Width (ft)	3.07	39.00
79.39 Vel Total (ft/s)	5.28	Avg. Vel. (ft/s)	1.33	7.11
1.88 Max Chl Dpth (ft)	5.66	Hydr. Depth (ft) Page 37	0.83	4.78

Temp	Bridge.	rep.txt
------	---------	---------

1.22	•	1		
Conv. Total (cfs)	24823.8	Conv. (cfs)	55.7	21765.3
3002.8				
Length Wtd. (ft) 79.42	55.90	Wetted Per. (ft)	3.49	40.95
79.42 Min Ch El (ft)	846.00	Shear (lb/sq ft)	0.17	1.06
0.28	040.00	Shear (10/34 11)	0.17	1.00
Alpha	1.60	Stream Power (lb/ft s)	195.00	0.00
0.00				
Frctn Loss (ft)	0.21	Cum Volume (acre-ft)	0.16	1.50
0.46				
C & E Loss (ft)	0.04	Cum SA (acres)	0.14	0.37
0.28				

## CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	852.75	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.80	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 8.00	851.95	Reach Len. (ft)	95.00	67.00
Crit W.S. (ft) 121.70		Flow Area (sq ft)	3.53	198.08
E.G. Slope (ft/ft) 121.70	0.004040	Area (sq ft)	3.53	198.08
Q Total (cfs) 261.79	1796.00	Flow (cfs)	5.48	1528.73
Top width (ft) 86.77	129.39	Top Width (ft)	3.62	39.00
vel Total (ft/s) 2.15	5.55	Avg. Vel. (ft/s)	1.55	7.72
Max Chl Dpth (ft) 1.40	5.95	Hydr. Depth (ft)	0.98	5.08
Conv. Total (cfs) 4118.6	28255.6	Conv. (cfs)	86.3	24050.8
Length Wtd. (ft) 86.81	53.85	Wetted Per. (ft)	4.11	40.95
Min Ch El (ft) 0.35	846.00	Shear (lb/sq ft)	0.22	1.22
0.33 Alpha 0.00	1.67	Stream Power (1b/ft s)	195.00	0.00
Fretn Loss (ft) 0.53	0.21	Cum Volume (acre-ft)	0.21	1.61
C & E Loss (ft) 0.29	0.07	Cum SA (acres)	0.16	0.37

## **CROSS SECTION**

RIVER: Bluestone Creek REACH: 1 RS: 600

INPUT

Description: X-600 Station Elevation Data Sta Elev St 0 859 1 12 num= Elev 857 Elev 846 Elev Sta 45 Sta 54 Sta 16 Sta 36 Elev 856 852 Page 38

64 845 190 850	74 847 210 862	Bridge.rep.txt 81 849 92	850 144	850
Manning's n Values	num=	3		
Sta n Val 0 .055	Sta n Val 45 .035	Sta n Val 81 .055		
	ht Lengths: Le 81	eft Channel Right 63 43 1	Coeff Contr.	Expan.
CROSS SECTION OUTPUT	Profile #2 Year	<b>,</b>	-	
E.G. Elev (ft)	849.67	Element	Left OB	Channel
Right OB Vel Head (ft)	0.34	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	849.32	Reach Len. (ft)	63.00	43.00
1.00 Crit_W.S. (ft)		Flow Area (sq ft)		88.96
0.57 E.G. Slope (ft/ft)	0.003345	Area (sq ft)		88.96
0.57 Q Total (cfs)	419.00	Flow (cfs)		418.74
0.26 Top_Width (ft)	35.52	Top width (ft)		31.98
3.54 Vel Total (ft/s)	4.68	Avg. Vel. (ft/s)		4.71
0.46 Max Chl Dpth (ft)	4.32	Hydr. Depth (ft)		2.78
0.16 Conv. Total (cfs)	7244.9	Conv. (cfs)		7240.4
4.5 Length Wtd. (ft)	43.02	Wetted Per. (ft)		33.52
3.55 Min Ch El (ft)	845.00	Shear (1b/sq ft)		0.55
0.03 Alpha	1.01	Stream Power (lb/ft s)	210.00	0.00
0.00 Frctn Loss (ft)	0.19	Cum Volume (acre-ft)	0.00	0.56
0.11 C & E Loss (ft) 0.07	0.01	Cum SA (acres)	0.01	0.28
chocc creation output	5m25ila #10 Van	_		
CROSS SECTION OUTPUT	Profile #10 Yea	r		
E.G. Elev (ft)	851.20	Element	Left OB	Channe1
Right OB Vel Head (ft) 0.055	0.53	Wt. n-Val.		0.035
W.S. Elev (ft) 1.00	850.66	Reach Len. (ft)	63.00	43.00
Crit W.S. (ft)	849.57	Flow Area (sq ft)		133.18
78.03 E.G. Slope (ft/ft)	0.003720	Area (sq ft)		133.18
78.03 Q Total (cfs) 102.07	928.00	Flow (cfs)		825.93
Top Width (ft)	144.10	Top Width (ft)		33.99
110.10		Page 39		

	•		:	
Vel Total (ft/s) 1.31	Те <b>тр</b> 4.39	Bridge.rep.txt Avg. Vel. (ft/s)		6.20
Max Chl Dpth (ft) 0.71	5.66	Hydr. Depth (ft)		3.92
Conv. Total (cfs) 1673.4	15214.2	Conv. (cfs)		13540.9
Length Wtd. (ft) 110.33	39.78	Wetted Per. (ft)		35.93
Min Ch El (ft) 0.16	845.00	Shear (lb/sq ft)		0.86
Alpha 0.00	1.78	Stream Power (lb/ft s)	210.00	0.00
Frctn Loss (ft) 0.22	0.16	Cum Volume (acre-ft)	0.06	0.95
C & E Loss (ft) 0.17	0.00	Cum SA (acres)	0.08	0.31
CROSS SECTION OUTPUT	Profile #25 Yea	r		

E.G. Elev (ft)	851.73	Element	Left OB	Channel
Right OB				
Vel_Head (ft)	0.56	Wt. n-Val.		0.035
0.055				
W.S. Elev (ft)	851.17	Reach Len. (ft)	63.00	43.00
1.00				
Crit W.S. (ft)		Flow Area (sq ft)		150.69
134.34				
<pre>E.G. Slope (ft/ft)</pre>	0.003722	Area (sq ft)		150.69
134.34				
Q Total (cfs)	1249.00	Flow (cfs)		998.02
250.98				
Top Width (ft)	<b>145.71</b>	Top Width (ft)		34.76
110.95				
Vel Total (ft/s)	4.38	Avg. Vel. (ft/s)		6.62
1.87		g (, -,,		• • • • • • • • • • • • • • • • • • • •
Max Chl Dpth (ft)	6.17	Hydr. Depth (ft)		4.34
1.21	V	my art bepen (re)		
Conv. Total (cfs)	20473.7	Conv. (cfs)		16359.6
4114.1	2017317	CONV. (C13)		10333.0
Length Wtd. (ft)	35.98	Wetted Per. (ft)		36.85
111.32	33.30	welled Fer. (11)		30.03
Min Ch El (ft)	845.00	Shear (1b/sq ft)		0.95
	043.00	Silear (TD/Sq TC)		0.95
0.28	1 06	Charam Dawan (7h/fh a)	210.00	0.00
Alpha	1.86	Stream Power (lb/ft s)	210.00	0.00
0.00	À 43		0.13	
Frctn Loss (ft)	0.13	Cum Volume (acre-ft)	0.12	1.13
0.36				
C_&_E_Loss (ft)	0.02	Cum SA (acres)	0.12	0.31
0.25				

## CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	852.11	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.56	wt. n-val.		0.035
W.S. Elev (ft)	851.54	Reach Len. (ft) Page 40	63.00	43.00

Temp			

Crit W.S. (ft)		Flow Area (sq ft)		163.62
175.42 E.G. Slope (ft/ft)	0.003677	Area (sq ft)		163.62
175.42 Q Total (cfs)	1512.00	Flow (cfs)		1124.50
387.50 Top Width (ft)	146.88	Top Width (ft)		35.31
111.57 Vel Total (ft/s)	4.46	Avg. Vel. (ft/s)		6.87
2.21 Max Chl Dpth (ft)	6.54	Hydr. Depth (ft)		4.63
1.57 Conv. Total (cfs) 6390.0	24933.3	Conv. (cfs)		18543.4
Length Wtd. (ft) 112.04	33.79	Wetted Per. (ft)		37.52
Min Ch El (ft)	845.00	Shear (1b/sq ft)		1.00
0.36 Alpha 0.00	1.83	Stream Power (1b/ft s)	210.00	0.00
Frctn Loss (ft) 0.43	0.11	Cum Volume (acre-ft)	0.16	1.23
0.43 C & E Loss (ft) 0.26	0.03	Cum SA (acres)	0.14	0.31

# CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	852.48	Element	Left OB	Channe?
Right OB Vel Head (ft)	0.58	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	851.90	Reach Len. (ft)	63.00	43.00
1.00 Crit W.S. (ft)		Flow Area (sq ft)		176.31
215.32 E.G. Slope (ft/ft)	0.003652	Area (sq ft)		176.31
215.32 Q Total (cfs)	1796.00	Flow (cfs)		1254.85
541.15 Top Width (ft)	148.01	Top Width (ft)		35.85
112.16 Vel_Total (ft/s)	4.59	Avg. Vel. (ft/s)		7.12
2.51 Max Chl Dpth (ft)	6.90	Hydr. Depth (ft)		4.92
1.92 Conv. Total (cfs)	29720.1	Conv. (cfs)		20765.2
8954.9 Length Wtd. (ft)	32.05	Wetted Per. (ft)		38.16
112.73 Min Ch El (ft)	845.00	Shear (lb/sq ft)		1.05
0.44 Alpha	1.77	Stream Power (lb/ft s)	210.00	0.00
0.00 Frctn Loss (ft)	0.10	Cum Volume (acre-ft)	0.21	1.32
0.50 C.& E Loss (ft) 0.27	0.03	Cum SA (acres)	0.15	0.31

## CROSS SECTION

RIVER: Bluestone Creek REACH: 1	RS: 500			
INPUT Description: X-500 Station Elevation Data Sta Elev Sta 0 856 50 100 846.5 106 223 852 240	num= Elev 850 849.5 862		Elev Sta 46.77 95 50.45 215	Elev 845.64 850
Manning's n Values Sta n Val Sta 0 .055 70	num= n Val .035	3 Sta n Val 106 .055		
Bank Sta: Left Right 70 106	Lengths:	Left Channel Right 85 68 5	Coeff Contr.	Expan. .3
CROSS SECTION OUTPUT Pro	file #2 Ye	ear	t y	
E.G. Elev (ft)	849.47	Element	Left OB	Channel
Right OB Vel Head (ft)	0.46	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	849.01	Reach Len. (ft)	85.00	68.00
5.00 Crit W.S. (ft)		Flow Area (sq ft)	1.74	76.84
E.G. Slope (ft/ft)	0.005935	Area (sq ft)	1.74	76.84
Q Total (cfs)	419.00	Flow (cfs)	1.45	417.55
Top width (ft)	41.83	Top Width (ft)	6.81	35.02
vel Total (ft/s)	5.33	Avg. Vel. (ft/s)	0.84	5.43
Max Chl Dpth (ft)	3.37	Hydr. Depth (ft)	0.26	2.19
Conv. Total (cfs)	5438.9	Conv. (cfs)	18.8	5420.0
Length Wtd. (ft)	68.03	Wetted Per. (ft)	6.82	35.88
Min Ch El (ft)	845.64	Shear (lb/sq ft)	0.09	0.79
Alpha 0.00	1.03	Stream Power (1b/ft s)	240.00	0.00
Frctn Loss (ft)	0.47	Cum Volume (acre-ft)	0.00	0.48
0.11 C & E Loss (ft) 0.07	0.01	Cum SA (acres)	0.01	0.24
CROSS SECTION OUTPUT Prof	file #10 Y	ear		
E.G. Elev (ft)	851.04	Element	Left OB	Channel
Right OB		Page 42		

	Temp	Bridge.rep.txt	•	
Vel Head (ft) 0.055	0.55	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 5.00	850.49	Reach Len. (ft)	85.00	68.00
Crit w.s. (ft) 56.40	849.78	Flow Area (sq ft)	25.79	129.85
E.G. Slope (ft/ft) 56.40	0.004133	Area (sq ft)	25.79	129.85
Q Total (cfs) 62.37	928.00	Flow (cfs)	46.78	818.85
Top Width (ft) 110.96	171.04	Top Width (ft)	24.08	36.00
Vel Total (ft/s) 1.11	4.38	Avg. Vel. (ft/s)	1.81	6.31
Max Chl Dpth (ft) 0.51	4.85	Hydr. Depth (ft)	1.07	3.61
Conv. Total (cfs) 970.2	14435.8	Conv. (cfs)	727.8	12737.8
Length Wtd. (ft) 111.03	64.91	Wetted Per. (ft)	24.17	36.97
Min Ch El (ft) 0.13	845.64	Shear (lb/sq ft)	0.28	0.91
Alpha 0.00	1.85	Stream Power (lb/ft s)	240.00	0.00
Frctn Loss (ft) 0.22	0.38	Cum Volume (acre-ft)	0.04	0.82
C & E Loss (ft) 0.16	0.05	Cum SA (acres)	0.06	0.27

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft) Right OB	851.58	Element	Left OB	Channe?
Vel Head (ft)	0.49	Wt. n-val.	0.055	0.035
0.055 W.S. Elev (ft)	851.09	Reach Len. (ft)	85.00	68.00
5.00 Crit W.S. (ft)	850.64	Flow Area (sq ft)	41.74	151.45
123.68 E.G. Slope (ft/ft)	0.003397	Area (sq ft)	41.74	151.45
123.68 Q Total (cfs)	1249.00	Flow (cfs)	83.39	959.38
206.23 Top Width (ft)	178.44	Top width (ft)	29.08	36.00
113.36 Vel Total (ft/s)	3.94	Avg. Vel. (ft/s)	2.00	6.33
1.67 Max Chl Dpth (ft)	5.45	Hydr. Depth (ft)	1.44	4.21
1.09 Conv. Total (cfs)	21429.9	Conv. (cfs)	1430.8	16460.6
3538.5 Length wtd. (ft)	59.76	Wetted Per. (ft)	29.20	36.97
113.50 Min_Ch El (ft)	845.64	Shear (lb/sq ft)	0.30	0.87
0.23 Alpha	2.03	Stream Power (lb/ft s) Page 43	240.00	0.00

Freth Loss (ft) 0.35	0.30	Cum Volume (acre-ft)	0.09	0.98
C & E Loss (ft)	0.06	Cum SA (acres)	0.09	0.27

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

#### CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	851.96	Element	Left OB	Channe1
Right OB Vel Head (ft) 0.055	0.47	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 5.00	851.49	Reach Len. (ft)	85.00	68.00
Crit W.S. (ft) 169.53	850.91	Flow Area (sq ft)	54.09	165.90
E.G. Slope (ft/ft) 169.53	0.003104	Area (sq ft)	54.09	165.90
Q Total (cfs) 330.22	1512.00	Flow (cfs)	114.16	1067.61
Top Width (ft) 114.96	183.39	Top width (ft)	32.43	36.00
Vel Total (ft/s) 1.95	3.88	Avg. Vel. (ft/s)	2.11	6.44
Max Chl Dpth (ft)	5.85	Hydr. Depth (ft)	1.67	4.61
Conv. Total (cfs) 5926.9	27137.6	Conv. (cfs)	2049.0	19161.7
Length Wtd. (ft) 115.16	56.72	Wetted Per. (ft)	32.57	36.97
Min Ch El (ft) 0.29	845.64	Shear (1b/sq ft)	0.32	0.87
Alpha 0.00	2.02	Stream Power (1b/ft s)	240.00	0.00
Frctn Loss (ft) 0.43	0.27	Cum Volume (acre-ft)	0.12	1.07
C & E Loss (ft) 0.26	0.06	Cum SA (acres)	0.11	0.28

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

#### CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft) Right OB Vel Head (ft) 0.055	852.34	Element	Left OB	Channel
	0.47	Wt. n-Val.	0.055	0.035
0.055		0 44		

	Temp	Bridge.rep.txt		
W.S. Elev (ft) 5.00	851.87	Reach Len. (ft)	85.00	68.00
Crit W.S. (ft) 213.39		Flow Area (sq ft)	66.98	179.55
E.G. Slope (ft/ft) 213.39	0.002921	Area (sq ft)	66.98	179.55
Q Total (cfs)	1796.00	Flow (cfs)	148.62	1181.49
465.89 Top Width (ft) 116.48	188.07	Top width (ft)	35.58	36.00
Vel Total (ft/s)	3.91	Avg. Vel. (ft/s)	2.22	6.58
2.18 Max Chl Dpth (ft) 1.83	6.23	Hydr. Depth (ft)	1.88	4.99
Conv. Total (cfs) 8619.9	33229.9	Conv. (cfs)	2749.8	21860.2
Length Wtd. (ft)	54.36	Wetted Per. (ft)	35.75	36.97
116.72 Min Ch El (ft) 0.33	845.64	Shear (lb/sq ft)	0.34	0.89
Alpha	1.98	Stream Power (lb/ft s)	240.00	0.00
0.00 Frctn Loss (ft)	0.25	Cum Volume (acre-ft)	0.16	1.15
0.50 C & E Loss (ft) 0.27	0.07	Cum SA (acres)	0.13	0.28

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

## **CROSS SECTION**

Right OB Vel Head (ft)

	v.				
RIVER: Bluestone Creek REACH: 1	RS: 400				
INPUT Description: X-400 Station Elevation Data Sta Elev Sta 0 875 7 48 846 55 108 849 141 190 860	859 845.52	6 Sta Elev 22 851 67 846 168 849	Sta 36 72 170	851 849	Sta Elev 42 847 83 849 175 852
Manning's n Values Sta n Val Sta 0 .055 36		3 Sta n Val 72 .055			
Bank Sta: Left Right 36 72	Lengths: Lef		Right 45	Coeff Cont	
CROSS SECTION OUTPUT Pro	file #2 Year				
E.G. Elev (ft)	848.99	Element		Left C	B Channel

Wt. n-Val. Page 45

0.60

0.035

W.S. Elev (ft) 45.00	848.39	Reach Len. (ft) 12	25.00 105.	00
Crit W.S. (ft)		Flow Area (sq ft)	67.	38
E.G. Slope (ft/ft)	0.008031	Area (sq ft)	67.	.38
Q Total (cfs)	419.00	Flow (cfs)	419.	00
Top Width (ft)	31.05	Top Width (ft)	31.	05
Vel Total (ft/s)	6.22	Avg. Vel. (ft/s)	6.	22
Max Chl Dpth (ft)	2.87	Hydr. Depth (ft)	2.	17
Conv. Total (cfs)	4675.5	Conv. (cfs)	4675	i <b>.</b> 5
Length Wtd. (ft)	105.00	Wetted Per. (ft)	32.	24
Min Ch El (ft)	845.52	Shear (1b/sq ft)	1.	05
Alpha	1.00	Stream Power (lb/ft s) 19	0.00 0.	00
0.00 Frctn Loss (ft)	1.13	Cum Volume (acre-ft)	0.	36
0.11 C & E Loss (ft) 0.07	0.04	Cum SA (acres)	0.	19

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	850.61	Element	Left OB	Channel
Right OB Vel_Head (ft)	1.03	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	849.58	Reach Len. (ft)	125.00	105.00
45.00 Crit W.S. (ft)	849.58	Flow Area (sq ft)		106.31
26.03 E.G. Slope (ft/ft)	0.008968	Area (sq ft)		106.31
26.03 Q Total (cfs)	928.00	Flow (cfs)		886.58
41.42 Top Width (ft)	88.29	Top Width (ft)		33.86
54.42 vel Total (ft/s)	7.01	Avg. Vel. (ft/s)		8.34
1.59 Max Chl Dpth (ft)	4.06	Hydr. Depth (ft)		3.14
0.48 Conv. Total (cfs)	9799.5	Conv. (cfs)		9362.1
437.4 Length Wtd. (ft)	102.85	Wetted Per. (ft)		35.58
54.60 Min Ch El (ft)	845.52	Shear (lb/sq ft)		1.67
0.27 Alpha	1.35	Stream Power (lb/ft s)	190.00	0.00
0.00	2.03	Page 46		0.00

	Temp	Bridge.rep.txt Cum Volume (acre-ft)	,	
Frctn Loss (ft)	0.91	Cum Volume (acre-ft)	0.02	0.64
0.21			•	
C & E Loss (ft)	0.01	C⊎m SA (acres)	0.04	0.22
Λ 15		•		

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

#### CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	851.22	Element	Left OB	Channel
Right OB Vel Head (ft)	1.06	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	850.16	Reach Len. (ft)	125.00	105.00
45.00 Crit W.S. (ft)	850.16	Flow Area (sq ft)		126.41
63.43 E.G. Slope (ft/ft)	0.008144	Area (sq ft)		126.41
63.43 Q Total (cfs)	1249.00	Flow (cfs)		1105.86
143.14 Top Width (ft)	108.00	Top Width (ft)		34.74
73.26 Vel Total (ft/s)	6.58	Avg. Vel. (ft/s)		8.75
2.26 Max Chl Dpth (ft)	4.64	Hydr. Depth (ft)		3.64
0.87 Conv. Total (cfs)	13840.2	Conv. (cfs)		12254.1
1586.1 Length Wtd. (ft)	98.42	Wetted Per. (ft)		36.64
73.61 Min Ch El (ft)	845.52	Shear (lb/sq ft)		1.75
0.44 A]pha	1.58	Stream Power (lb/ft s)	190.00	0.00
0.00 Frctn Loss (ft)	0.70	Cum Volume (acre-ft)	0.05	0.76
0.34 C & E Loss (ft) 0.24	0.03	Cum SA (acres)	0.07	0.22

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

Temp Bridge.rep.txt CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	851.63	Element	Left OB	Channel
Right OB Vel Head (ft)	1.10	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	850.54	Reach Len. (ft)	125.00	105.00
45.00 Crit W.S. (ft)	850.54	Flow Area (sq ft)		139.58
93.27 E.G. Slope (ft/ft)	0.007912	Area (sq ft)		139.58
93.27 Q Total (cfs)	1512.00	Flow (cfs)		1270.14
241.86 Top Width (ft)	120.79	Top Width (ft)	•	35.31
85.48 Vel_Total (ft/s)	6.49	Avg. Vel. (ft/s)		9.10
2.59 Max Chl Dpth (ft)	5.02	Hydr. Depth (ft)		3.95
1.09 Conv. Total (cfs)	16998.2	Conv. (cfs)	* .	14279.1
2719.1 Length Wtd. (ft)	95.71	wetted Per. (ft)		37.32
85.92 Min Ch El (ft)	845.52	Shear (lb/sq ft)		1.85
0.54 Alpha	1.68	Stream Power (lb/ft s)	190.00	0.00
0.00 Freth Loss (ft)	0.67	Cum Volume (acre-ft)	0.07	0.83
0.41 C & E Loss (ft) 0.25	0.03	Cum SA (acres)	0.08	0.22

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program

valid subcritical answer. The program defaulted to critical depth.

## CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	852.02	Element	Left OB	Channel
Right OB Vel Head (ft)	1.17	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	850.85	Reach Len. (ft)	125.00	105.00
45.00 Crit W.S. (ft)	850.85	Flow Area (sq ft)		150.61
121.36 E.G. Slope (ft/ft)	0.008098	Area (sq ft)		150.61
121.36 Q Total (cfs)	1796.00	Flow (cfs)		1444.17
351.83 Top_Width (ft)	131.34	Top Width (ft)		35.77
95.56		Page 48		

	Temp	Bridge.rep.txt		•
Vel Total (ft/s) 2.90	6.60	Avg. Vel. (ft/s)		9.59
Max Chl Dpth (ft) 1.27	5.33	Hydr. Depth (ft)		4.21
Conv. Total (cfs) 3909.8	19958.3	Conv. (cfs)		16048.5
Length Wtd. (ft) 96.09	93.76	Wetted Per. (ft)		37.88
Min Ch El (ft) 0.64	845.52	Shear (lb/sq ft)		2.01
Alpha 0.00	1.73	Stream Power (lb/ft s)	190.00	0.00
Frctn Loss (ft) 0.48	0.70	Cum Volume (acre-ft)	0.09	0.89
C & E Loss (ft) 0.26	0.02	Cum SA (acres)	0.09	0.22

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section. Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

## **CROSS SECTION**

RIVER:	Bluesto	ne Creek
--------	---------	----------

REACH: 1	RS: 300				
INPUT Description: X-300 Station Elevation Data Sta Elev Sta 0 885 7 33 848 37 84 848 88 162 853 180	Elev 878 845	l7 Sta Elev 9 849 49 844 112 848	Sta 21 57 126	Elev Sta 850 26 845 64 849 152	848 848
Manning's n Values Sta n Val Sta 0 .055 33		3 Sta n Val 64 .055			
Bank Sta: Left Right 33 64	Lengths: Le	eft Channel L25 98	Right 20	Coeff Contr.	Expan.
CROSS SECTION OUTPUT Prof	file #2 Year	•			
E.G. Elev (ft)	847.81	Element		Left OB	Channel
Right OB Vel Head (ft)	1.00	Wt. n-Val.			0.035
W.S. Elev (ft) 20.00	846.81	Reach Len.	(ft)	125.00	98.00
Crit W.S. (ft)	846.81	Flow Area (	sq ft)		52.28
E.G. Slope (ft/ft)	0.015301	Area (sq ft	)		52.28

Q Total (cfs)	419.00	Flow (cfs)		419.00
Top Width (ft)	26.65	Top width (ft)		26.65
Vel Total (ft/s)	8.01	Avg. Vel. (ft/s)		8.01
Max Chl Dpth (ft)	2.81	Hydr. Depth (ft)		1.96
Conv. Total (cfs)	3387.3	Conv. (cfs)		3387.3
Length Wtd. (ft)	81.71	Wetted Per. (ft)		27.73
Min Ch El (ft)	844.00	Shear (lb/sq ft)		1.80
Alpha 0.00	1.00	Stream Power (lb/ft s)	180.00	0.00
Frctn Loss (ft) 0.11	0.66	Cum Volume (acre-ft)		0.22
C & E Loss (ft) 0.07	0.23	Cum SA (acres)		0.12

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

#### CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft)	849.67	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	1.10	Wt. n-Val.	0.055	0.035
W.S. Elev (ft) 20.00	848.58	Reach Len. (ft)	125.00	98.00
Crit W.S. (ft) 18.57	848.58	Flow Area (sq ft)	4.46	104.41
E.G. Slope (ft/ft) 18.57	0.008644	Area (sq ft)	4.46	104.41
Q Total (cfs) 27.47	928.00	Flow (cfs)	7.26	893.27
Top Width (ft) 44.27	83.71	Top Width (ft)	8.44	31.00
vel Total (ft/s) 1.48	7.28	Avg. Vel. (ft/s)	1.63	8.56
Max Chl Dpth (ft) 0.42	4.58	Hydr. Depth (ft)	0.53	3.37
Conv. Total (cfs)	9981.4	Conv. (cfs) Page 50	78.1	9607.9

295.4				
Length Wtd. (ft)	81.24	Wetted Per. (ft)	8.56	32.72
Min Ch El (ft)	844.00	Shear (lb/sq ft)	0.28	1.72
0.23 Alpha 0.00	1.33	Stream Power (lb/ft s)	180.00	0.00
Frctn Loss (ft) 0.19	0.55	Cum Volume (acre-ft)	0.01	0.38
C & E Loss (ft) 0.10	0.20	Cum SA (acres)	0.03	0.14

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations.

Warning: Divided flow computed for this cross-section.

Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set equal to critical depth, the calculated water

equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

### CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	850.32	Element	Left OB	Channel
Right OB Vel Head (ft)	0.95	Wt. n-val.	0.055	0.035
0.055 W.S. Elev (ft)	849.38	Reach Len. (ft)	125.00	98.00
20.00 Crit W.s. (ft)	849.38	Flow Area (sq ft)	12.85	129.15
74.25 E.G. Slope (ft/ft)	0.006228	Area (sq ft)	12.85	129.15
74.25 Q Total (cfs)	1249.00	Flow (cfs)	28.16	1080.74
140.10 Top Width (ft)	134.92	Top Width (ft)	14.98	31.00
88.94 Vel_Total (ft/s)	5.78	Avg. Vel. (ft/s)	2.19	8.37
1.89 Max Chl Dpth (ft)	5.38	Hydr. Depth (ft)	0.86	4.17
0.83 Conv. Total (cfs)	15826.9	Conv. (cfs)	356.9	13694.8
1775.3 Length Wtd. (ft)	78.24	Wetted Per. (ft)	15.61	32.72
89.Ĭ9 Min Ch El (ft)	844.00	Shear (lb/sq ft)	0.32	1.53
0.32 Alpha	1.83	Stream Power (lb/ft s)	180.00	0.00
0.00 Frctn Loss (ft)	0.53	Cum Volume (acre-ft)	0.03	0.46
0.27 C & E Loss (ft)	0.10	Cum SA (acres)	0.04	0.14
0.15	0.10	cam on (acres)	0.07	0.14

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

#### CROSS SECTION OUTPUT Profile #50 Year

E.G. Elev (ft)	850.70	Element	Left OB	<b>Channel</b>
Right OB Vel Head (ft)	1.00	Wt. n-val.	0.055	0.035
0.055 W.S. Elev (ft) 20.00	849.70	Reach Len. (ft)	125.00	98.00
Crit W.S. (ft) 102.88	849.70	Flow Area (sq ft)	18.40	139.09
E.G. Slope (ft/ft) 102.88	0.006282	Area (sq ft)	18.40	139.09
Q Total (cfs) 240.74	1512.00	Flow (cfs)	43.16	1228.10
Top Width (ft) 89.74	140.38	Top Width (ft)	19.64	31.00
vel Total (ft/s) 2.34	5.81	Avg. Vel. (ft/s)	2.35	8.83
Max Chl Dpth (ft) 1.15	5.70	Hydr. Depth (ft)	0.94	4.49
Conv. Total (cfs)	19076.9	Conv. (cfs)	544.5	15494.9
Length Wtd. (ft)	76.59	Wetted Per. (ft)	20.65	32.72
Min Ch El (ft) 0.45	844.00	Shear (lb/sq ft)	0.35	1.67
Alpha 0.00	1.91	Stream Power (lb/ft s)	180.00	0.00
Frctn Loss (ft) 0.31	0.55	Cum Volume (acre-ft)	0.04	0.49
C & E Loss (ft) 0.16	0.07	Cum SA (acres)	0.05	0.14

Warning: The energy equation could not be balanced within the specified number of iterations. The program used critical depth

for the water surface and continued on with the calculations. Warning: Divided flow computed for this cross-section.

Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water

surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

## CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	851.05	Element	Left OB	Channel
Right OB Vel Head (ft)	1.12	Wt. n-Val.	0.055	0.035
0.055	1.12	wt. II-vai.	0.055	0.033
W.S. Elev (ft)	849.93	Reach Len. (ft)	125.00	98.00
20.00 Crit W.S. (ft)	849.93	Flow Area (sq ft)	23.39	146.34
123.95			•	
E.G. Slope (ft/ft)	0.006844	Area (sq ft)	23.39	146.34
123.95 Q Total (cfs)	1796.00	Flow (cfs)	59.62	1395.20
341.18	1/30.00	11011 (613)	JJ. 02	1333.20
Top Width (ft)	144.38	Top width (ft)	23.05	31.00
90.33 Vel Total (ft/s)	6.12	Avg. Vel. (ft/s)	2.55	9.53
2.75	0.12	Avg. vei. (11/5)	2.33	9.55
Max Chl Dpth (ft)	5.93	Hydr. Depth (ft)	1.01	4.72
1.37				
Conv. Total (cfs)	21710.1	Conv. (cfs)	720.7	16865.1
4124.2 Length Wtd. (ft)	75.20	Wetted Per. (ft)	24.33	32.72
90.68	73.20	weeted fer. (12)	24.33	JL. / L
Min Ch El (ft)	844.00	Shear (lb/sq ft)	0.41	1.91
9.58	4.00	- (3) (6)		
Alpha	1.93	Stream Power (lb/ft s)	180.00	0.00
0.00 Frctn Loss (ft)	0.57	Cum Volume (acre-ft)	0.06	0.53
0.35	0.37	cum vorume (acre-rc)	0.00	0.33
C & E Loss (ft)	0.07	Cum SA (acres)	0.06	0.14
0.16				

Warning: The energy equation could not be balanced within the specified number of

iterations. The program used critical depth
for the water surface and continued on with the calculations.
Warning: Divided flow computed for this cross-section.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the

meed for additional cross sections.

Warning: During the standard step iterations, when the assumed water surface was set

equal to critical depth, the calculated water surface came back below critical depth. This indicates that there is not a valid subcritical answer. The program defaulted to critical depth.

#### **CROSS SECTION**

RIVER: Bluestone Creek

RS: 200 REACH: 1

Description: X-200

Station El	evation [	Data	num=	18					
Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
0	873	8	857	23	848	31	847	35	844
44	843	50	845	62	847	68	848	81	847
84	847	93	845	109	844	117	844	123	848
				Page	≥ 53				

Temp Bridge rep.txt 852 172 860

Manning's n Values num= 3
Sta n Val Sta n Val
0 .055 31 .035 62 .055

156

Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 31 62 115 105 75 .1 .3

#### CROSS SECTION OUTPUT Profile #2 Year

850

141

E.G. Elev (ft) Right OB	846.77	Element	Left OB	Channel
Vel Head (ft) 0.055	0.24	Wt. n-Val.		0.035
∵W.S. Elev (ft)	846.53	Reach Len. (ft)	115.00	105.00
75.00 Crit W.S. (ft) 62.72	845.76	Flow Area (sq ft)		53.69
E.G. Slope (ft/ft) 62.72	0.005017	Area (sq ft)		53.69
02.72 Q Total (cfs) 174.97	419.00	Flow (cfs)		244.03
Top Width (ft)	62.21	Top Width (ft)		27.54
34.67 Vel Total (ft/s)	3.60	Avg. Vel. (ft/s)		4.55
2.79 Max Chl Dpth (ft)	3.53	Hydr. Depth (ft)		1.95
1.81 Conv. Total (cfs)	5915.6	Conv. (cfs)		3445.3
2470.3 Length Wtd. (ft)	91.70	Wetted Per. (ft)		28.89
35.63 Min Ch El (ft)	843.00	Shear (1b/sq ft)		0.58
0.55 Alpha	1.18	Stream Power (lb/ft s)	172.00	0.00
0.00 Frctn Loss (ft)	0.85	Cum Volume (acre-ft)		0.10
0.09 C & E Loss (ft) 0.06	0.04	Cum SA (acres)		0.06

Warning: Divided flow computed for this cross-section.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.

#### CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft) Right OB	848.14	Element	Left OB	Channel
Vel Head (ft) 0.055	0.41	Wt. n-Val.	0.055	0.035
W.S. Elev (ft)	847.72	Reach Len. (ft)	115.00	105.00
75.00 Crit W.S. (ft)	846.73	Flow Area (sq ft)	2.08	89.86
114.30 E.G. Slope (ft/ft)	0.005393	Area (sq ft)	2.08	89.86
114.30		Dawa <b>F</b> 4		

•	Temp	o Bridge.rep.txt	:	
Q Total (cfs)	928.00	Flow (cfs)	2.08	551.42
374.50 Top Width (ft) 55.29	92.06	Top Width (ft)	5.77	31.00
Vel Total (ft/s) 3.28	4.50	Avg. Vel. (ft/s)	1.00	6.14
Max Chl Dpth (ft)	4.72	Hydr. Depth (ft)	0.36	2.90
2.07 Conv. Total (cfs) 5099.7	12637.1	Conv. (cfs)	28.4	7509.0
Length Wtd. (ft) 56.75	91.64	Wetted Per. (ft)	5.82	32.55
Min Ch El (ft)	843.00	Shear (1b/sq ft)	0.12	0.93
0.68 Alpha 0.00	1.32	Stream Power (1b/ft s)	172.00	0.00
Fretn Loss (ft) 0.16	0.96	Cum Volume (acre-ft)	0.00	0.16
C & E Loss (ft) 0.08	0.07	Cum SA (acres)	0.01	0.07

Warning: Divided flow computed for this cross-section.
Warning: The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for additional cross sections.
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than 1.4.

This may indicate the need for additional cross sections.
Warning: The energy loss was greater than 1.0 ft (0.3 m). between the current and previous cross section. This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	848.59	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.63	wt. n-Val.	0.055	0.035
W.S. Elev (ft) 75.00	847.96	Reach Len. (ft)	115.00	105.00
Crit W.S. (ft) 128.31	847.10	Flow Area (sq ft)	3.72	97.38
<pre>E.G. Slope (ft/ft)</pre>	0.007417	Area (sq ft)	3.72	97.38
128.31 Q Total (cfs)	1249.00	Flow (cfs)	5.29	739.33
504.39 Top Width (ft)	98.97	Top Width (ft)	7.71	31.00
60.26 Vel Total (ft/s) 3.93	5.44	Avg. Vel. (ft/s)	1.42	7.59
Max Chl Dpth (ft) 2.13	4.96	Hydr. Depth (ft)	0.48	3.14
Conv. Total (cfs)	14502.5	Conv. (cfs)	61.4	8584.5
5856.5 Length Wtd. (ft)	91.76	Wetted Per. (ft)	7.77	32.55
61.83 Min Ch El (ft)	843.00	Shear (1b/sq ft)	0.22	1.39
0.96 Alpha	1.36	Stream Power (lb/ft s)	172.00	0.00
0.00 Frctn Loss (ft)	0.92	Cum Volume (acre-ft) Page 55	0.01	0.20

0.22						
C & E Loss (ft)	0.02	Cum SA (acres)	0.01	0.07		
0.12				* *		

Warning: Divided flow computed for this cross-section.  $\cdot$ 

CROSS SECTION OUTPUT Profile #50 Year

the state of the s				
E.G. Elev (ft)	849.00	Element	Left OB	Channel
Right OB				
Vel_Head (ft)	0.76	Wt. n-val.	0.055	0.035
0.055				
W.S. Elev (ft)	848.24	Reach Len. (ft)	115.00	105.00
75.00				
Crit W.S. (ft)	847.51	Flow Area (sq ft)	5.93	105.79
145.10				
<pre>E.G. Slope (ft/ft)</pre>	0.008200	Area (sq ft)	5.93	105.79
145.10				
Q Total (cfs)	1512.00	Flow (cfs)	11.39	892.49
608.12				
Top Width (ft)	102.51	Top Width (ft)	8.39	31.00
63.12				
Vel Total (ft/s)	5.89	Avg. Vel. (ft/s)	1.92	8.44
4.19				
Max Chl Dpth (ft)	5.24	Hydr. Depth (ft)	0.71	3.41
2.30				
Conv. Total (cfs)	16697.5	Conv. (cfs)	125.8	9856.0
6715.7				
Length Wtd. (ft)	91.54	Wetted Per. (ft)	8.52	32.55
64.71				
Min Ch El (ft)	843.00	Shear (lb/sq ft)	0.36	1.66
1.15		•		
Alpha	1.42	Stream Power (lb/ft s)	172.00	0.00
0.00				
Frctn Loss (ft)	0.98	Cum Volume (acre-ft)	0.01	0.22
0.26		•		
C & E Loss (ft)	0.02	Cum SA (acres)	0.01	0.07
0.12		••		

Warning: The energy loss was greater than 1.0 ft  $(0.3\ m)$ . between the current and previous cross section. This may indicate the need for additional cross sections.

## CROSS SECTION OUTPUT Profile #100 Year

E.G. Elev (ft)	849.39	Element	Left OB	Channel
Right OB Vel Head (ft)	0.87	Wt. n-Val.	0.055	0.035
0.055 W.S. Elev (ft)	848.51	Reach Len. (ft)	115.00	105.00
75.00 Crit W.S. (ft)	847.83	Flow Area (sq ft)	8.32	114.38
162.93 E.G. Slope (ft/ft)	0.008588	Area (sq ft)	8.32	114.38
162.93 Q Total (cfs)	1796.00	Flow (cfs)	19.67	1040.27
736.06				

	Temp			•
Top width (ft) 65.61	105.46	Top width (ft)	8.85	31.00
Vel Total (ft/s)	6.29	Avg. Vel. (ft/s)	2.37	9.09
4.52 Max Chl Dpth (ft) 2.48	5.51	Hydr. Depth (ft)	0.94	3.69
Conv. Total (cfs)	19379.8	Conv. (cfs)	212.3	11225.0
7942.5 Length Wtd. (ft) 67.22	91.24	Wetted Per. (ft)	9.06	32.55
Min Ch El (ft) 1.30	843.00	Shear (1b/sq ft)	0.49	1.88
Alpha 0.00	1.42	Stream Power (1b/ft s)	172.00	0.00
Frctn Loss (ft) 0.29	1.02	Cum Volume (acre-ft)	0.01	0.24
C & E Loss (ft) 0.13	0.02	Cum SA (acres)	0.01	0.07

warning: The energy loss was greater than  $1.0~{\rm ft}~(0.3~{\rm m})$ . between the current and previous cross section. This may indicate the need for additional cross sections.

#### **CROSS SECTION**

RIVER:	Bluestone	Creek
--------	-----------	-------

REACH: 1 RS: 100

INPUT

De:	scr	ıpτ	:10n	: X-T	.UU
		•	_		

Static	on Ele	evation	Data	num=	15	•				
S	ita	Elev	Sta	Elev	Sta	Elev	Sta	Elev	Sta	Elev
	0	861	23	846	26	845	38	843	45	844
	5Õ	846	72	846	90	846	94	844	116	844
1	L <b>26</b>	844	136	851	141	852	160	856	172	860
_										

Manning's n Values num= 3
Sta n Val Sta n Val Sta n Val
0 .055 23 .035 50 .055

## CROSS SECTION OUTPUT Profile #2 Year

E.G. Elev (ft)	845.88	Element	Left OB	Channel
Right OB Vel Head (ft) 0.055	0.60	Wt. n-Val.		0.035
W.S. Elev (ft)	845.28	Reach Len. (ft)		
Crit W.S. (ft) 43.65	845.28	Flow Area (sq ft)		29.91
E.G. Slope (ft/ft) 43.65	0.022329	Area (sq ft)		29.91
Q Total (cfs) 196.46	419.00	Flow (cfs)		222.54
Top Width (ft) 36.38	59.40	Top Width (ft)		23.02

•	Temp	Bridge.rep.txt		
Vel Total (ft/s) 4.50	5.70	Bridge.rep.txt Avg. Vel. (ft/s)		7.44
Max Chl Dpth (ft) 1.20	2.28	Hydr. Depth (ft)		1.30
Conv. Total (cfs) 1314.7	2804.0	Conv. (cfs)		1489.3
Length Wtd. (ft) 37.08		Wetted Per. (ft)		23.55
Min Ch El (ft) 1.64	843.00	Shear (lb/sq ft)		1.77
Alpha 0.00	1.20	Stream Power (1b/ft s)	172.00	0.00
Frctn Loss (ft)		Cum Volume (acre-ft)		,
C & E Loss (ft)		Cum SA (acres)		

Warning: Divided flow computed for this cross-section.

CROSS SECTION OUTPUT Profile #10 Year

E.G. Elev (ft) Right OB	847.10	Element	Left OB	Channel
Vel Head (ft)	1.15	Wt. n-Val.		0.035
0.055 W.S. Elev (ft)	845.95	Reach Len. (ft)		
Crit W.S. (ft)	845.95	Flow Area (sq ft)		46.72
69.01 E.G. Slope (ft/ft)	0.028303	Area (sq ft)		46.72
69.01 Q Total (cfs)	928.00	Flow (cfs)		475.06
452.94 Top width (ft)	65.43	Top width (ft)		26.74
38.69 Vel_Total (ft/s)	8.02	Avg. Vel. (ft/s)		10.17
6.56 Max Chl Dpth (ft) 1.78	2.95	Hydr. Depth (ft)	•	1.75
Conv. Total (cfs) 2692.3	5516.1	Conv. (cfs)		2823.8
Length Wtd. (ft) 39.77		Wetted Per. (ft)		27.51
Min Ch El (ft)	843.00	Shear (lb/sq ft)		3.00
3.07 Alpha	1.15	Stream Power (lb/ft s)	172.00	0.00
0.00 Frctn Loss (ft)		Cum Volume (acre-ft)		
C & E Loss (ft)		Cum SA (acres)		

Warning: Divided flow computed for this cross-section.

CROSS SECTION OUTPUT Profile #25 Year

E.G. Elev (ft)	(ft)	847.64		Left OB	Channel
			Page 58		